Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (4): 871-881     CSTR: 32134.14.1005.4537.2022.270      DOI: 10.11902/1005.4537.2022.270
  综合评述 本期目录 | 过刊浏览 |
基于数值计算的罐底板阴极保护电位分布研究进展与展望
寇杰(), 任哲
中国石油大学 (华东) 储运与建筑工程学院 青岛 266580
Research Progress of Regional Cathodic Protection Potential Distribution of Tank Floor Based on Numerical Calculation
KOU Jie(), REN Zhe
College Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao 266580, China
全文: PDF(3252 KB)   HTML
摘要: 

总结了近几十年的罐底板阴极保护研究,归纳了影响油罐外底板腐蚀的直接和间接因素,介绍了储罐底板阴极保护的机理、方法及所用阳极地床形式,分析了目前数值模拟计算方法在罐底板阴极保护中的应用并讨论了阴极保护数值模拟技术的最新进展,以及阴极保护数值模拟技术现有的缺点,并对其未来的发展趋势进行了预测,可以为阴极保护系统的建设提供参考。

关键词 区域性阴极保护电位分布数值计算罐底板    
Abstract

At present, cathodic protection technology is the most effective and economical method for preventing oil and gas storage tank from corrosion, while regional cathodic protection technology, especially the regional cathodic protection technology of tank farms, is not mature enough. How to determine whether the cathodic protection applied to the protected facility is achieved the desire effect is still the bottleneck of the current technological development. This paper primarily summarizes the research on cathodic protection of tank floors from the previous decades and the direct and indirect factors impacting the tank outer floor corrosion, introduces the mechanisms, methods and forms of anode bed used for cathodic protection of tank floors, describes the application of the current numerical simulation calculation methods in cathodic protection of tank floors and the latest advancements. Finally, we summarize the existing drawbacks of numerical simulation techniques for cathodic protection and forecast their future development trends, with the goal of providing a helpful reference for construction of cathodic protection systems.

Key wordsregional cathodic protection    potential distribution    numerical simulation    tank floor
收稿日期: 2022-09-02      32134.14.1005.4537.2022.270
ZTFLH:  TE988  
基金资助:国家自然科学基金(52004323)
通讯作者: 寇杰,E-mail: chuyunk@126.com,研究方向为油气储运安全工程   
Corresponding author: KOU Jie, E-mail: chuyunk@126.com   
作者简介: 寇 杰,男,1969年生,教授

引用本文:

寇杰, 任哲. 基于数值计算的罐底板阴极保护电位分布研究进展与展望[J]. 中国腐蚀与防护学报, 2023, 43(4): 871-881.
KOU Jie, REN Zhe. Research Progress of Regional Cathodic Protection Potential Distribution of Tank Floor Based on Numerical Calculation. Journal of Chinese Society for Corrosion and protection, 2023, 43(4): 871-881.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.270      或      https://www.jcscp.org/CN/Y2023/V43/I4/871

图1  罐底板腐蚀机理
图2  储罐底板腐蚀因素
图3  金属表面电位与表面pH关系图[9]
图4  牺牲阳极保护技术与强制电流保护技术原理对比
图5  阳极地床形式图
Sacrificial anode protectionImpressed current protection
Anode typeErrorAnode typeError
Zn (good coating)0.22%-0.23%Hige silicon cast iron (good coating)0.057%-0.058%
Zn (bad coating)0.42%-0.46%Hige silicon cast iron (bad coating)0.014%-0.015%
Mg (good coating)0.27%-0.34%MMO (good coating)0.031%-0.032%
Mg (bad coating)0.21%-0.31%MMO (bad coating)0.017%-0.018%
表1  不同边界条件下的保护电位计算误差[26]
图6  X100钢在不同宽度和深度的缺陷处的电流密度[43]
图7  极化电位和电荷转移电阻之间关系[60]
图8  不同极化电位下金属的阻抗和保护程度[61]
图9  不同罐底介质的电阻率变化对保护电位的影响[67]
图10  不同阳极埋设形式下的罐底保护电位数值[68]
1 Liu G. Introduction and discussion of cathodic protection mechanisms [J]. Corros. Prot., 2021, 42(8): 76
1 刘 国. 阴极保护机理的介绍与浅议 [J]. 腐蚀与防护, 2021, 42(8): 76
2 Dan Y, Wang K, Wu W, et al. Recent advance in outer corrosion of tank bottom plate [J]. J. Northwest Univ. (Nat. Sci. Ed.), 2021, 51: 601
2 淡 勇, 王 珅, 武 玮. 储罐外底板腐蚀的研究进展 [J]. 西北大学学报(自然科学版), 2021, 51: 601
3 Li C Y, Chen X, He C, et al. Alternating current induced corrosion of buried metal pipeline: A review [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 139
3 李承媛, 陈 旭, 何 川 等. 埋地金属管道交流电腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 139
doi: 10.11902/1005.4537.2019.254
4 Hoar T P. The electrochemical behaviour of the tin-iron couple in dilute acid media [J]. Trans. Farad. Soc., 1934, 30: 472
doi: 10.1039/tf9343000472
5 Müller W J. The effect of cathodic reactions on the corrosion of metals from the viewpoint of the local cell theory [J]. Trans. Electrochem. Soc., 1939, 76: 167
doi: 10.1149/1.3500254
6 Mears R B, Brown R H. A theory of cathodic protection [J]. Trans. Electrochem. Soc., 1938, 74: 519
doi: 10.1149/1.3494017
7 Gummow R A, Fieltsch W, Segall S M. Would the real -850 mVCSE criterion please stand up [A]. Corrosion 2012 [C]. Salt Lake, City: NACE International, 2012: 2770
8 Evans U R. Metallic Corrosion, Passivity and Protection [M]. 2nd ed. London: Edward Arnold & Co., 1946
9 Gummow R A, Segall S, Fingas D. An alternative view of the cathodic protection mechanism on buried pipelines [J]. Mater. Perform., 2017, 56: 32
10 Leeds S. A review of what happens at the metal/electrolyte interface when cathodic protection is applied [A]. CEOCOR International Congress and Exhibition [C]. Florence, Italy, 2013
11 Kou J, Zhang X C, Cui G, et al. Research progress on cathodic protection potential distribution of tank bottom plate [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 305
11 寇 杰, 张新策, 崔 淦 等. 储罐底板阴极保护电位分布研究进展 [J]. 中国腐蚀与防护学报, 2017, 37: 305
12 Attarchi M, Brenna A, Ormellese M. FEM simulation of a grounded carbon steel pipe under impressed current cathodic protection [J]. Corros. Eng. Sci. Technol., 2022, 57: 159
doi: 10.1080/1478422X.2021.2005228
13 Riemer D P, Orazem M E. A mathematical model for the cathodic protection of tank bottoms [J]. Corros. Sci., 2005, 47: 849
doi: 10.1016/j.corsci.2004.07.018
14 Zhi W Q. The technology and application of MMO/Ti linear anode-cathodic protection to large tank [J]. Total Corros. Control, 2014, 28(9): 39
14 支伟群. MMO/Ti柔性阳极技术与应用——大型储罐阴极保护 [J]. 全面腐蚀控制, 2014, 28(9): 39
15 Liang H, Cui B R, Liang F, et al. The latest developments of numerical simulation technology of storage tank cathodic protection [J]. Total Corros. Control, 2018, 32(1): 9
15 梁 华, 崔斌荣, 梁 凡 等. 储罐阴极保护数值模拟技术研究进展 [J]. 全面腐蚀控制, 2018, 32(1): 9
16 Fang W L. Smart management system for regional cathodic protection in stations [J]. Corros. Prot., 2020, 41(3): 59
16 方卫林. 一种站场区域性阴极保护智能化管理系统 [J]. 腐蚀与防护, 2020, 41(3): 59
17 Zhuang D W, Du Y X, Chen T T, et al. Research on boundary condition inversion method for numerical simulation of regional cathodic protection and its application [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 346
17 庄大伟, 杜艳霞, 陈涛涛 等. 区域阴极保护数值模拟边界条件反演计算方法研究及应用 [J]. 中国腐蚀与防护学报, 2021, 41: 346
doi: 10.11902/1005.4537.2020.050
18 Wang P, Chang Z L, Mao Z Q, et al. Numerical modeling of cathodic protection potential distribution on exterior of tank bottom affected by external structure [J]. Corros. Prot., 2020, 41(1): 64
18 王 鹏, 常泽亮, 毛仲强 等. 外部结构对储罐底板外壁阴极保护电位分布影响的数值模拟计算 [J]. 腐蚀与防护, 2020, 41(1): 64
19 Yin X M. Numerical calculation of cathodic protection potential distribution on pipelines between well and metering station [D]. Qingdao: China University of Petroleum (East China), 2017
19 尹雪明. 井口—计量站管道阴极保护的数值计算 [D]. 青岛: 中国石油大学(华东), 2017
20 Ma W P, Zhang G Z, Liang C H, et al. Numerical modeling of deepwell anode to cathodic protection of bottom plate of tank [J]. Oil Gas Storage Transp., 2004, 23(9): 31
20 马伟平, 张国忠, 梁昌华 等. 深井阳极对储罐底板阴极保护的数值模拟 [J]. 油气储运, 2004, 23(9): 31
21 Hassanein A M, Glass G K, Buenfeld N R. Protection current distribution in reinforced concrete cathodic protection systems [J]. Cem. Concr. Compos., 2002, 24: 159
doi: 10.1016/S0958-9465(01)00036-1
22 Qian H J, Liu X G, Zhang S X, et al. Numerical simulation of cathodic protection inside pipes (II)-calculating the potential distribution inside large-size pipes by using the finite difference method [J]. Chem. Eng. Mach., 1997, (5): 33
22 钱海军, 刘小光, 张树霞 等. 管内阴极保护的数值模拟(Ⅱ)——有限差分法计算大口径管内的电位分布 [J]. 化工机械, 1997, (5): 33
23 DeGiorgi V G, Wimmer S A. Geometric details and modeling accuracy requirements for shipboard impressed current cathodic protection system modeling [J]. Eng. Anal. Bound. Elem., 2005, 29: 15
doi: 10.1016/j.enganabound.2004.09.006
24 Ji J G, Du M, Wang Q Z, et al. The ascertainment of boundary condition for numerical value calculation in cathodic protection of simulative submarine pipeline [J]. Trans. Oceanol. Limnol., 2008, (3): 85
24 纪俊刚, 杜 敏, 王庆璋 等. 模拟海底管道的阴极保护中数值计算边界条件的确定 [J]. 海洋湖沼通报, 2008, (3): 85
25 Chen J. Numerical simulation of regional cathodic protection in gas transmission station and optimization of anode location [D]. Chengdu: Southwest Petroleum University, 2009
25 陈 静. 输气站场区域性阴极保护数值模拟及阳极位置优化研究 [D]. 成都: 西南石油大学, 2009
26 Jiang K K, Du Y X, Lu M X, et al. Selection of boundary conditions of anodes in numerical simulation of cathodic protection system [J]. Corros. Sci. Prot. Technol., 2013, 25: 287
26 蒋卡克, 杜艳霞, 路民旭 等. 阴极保护数值模拟计算中阳极边界条件选取研究 [J]. 腐蚀科学与防护技术, 2013, 25: 287
27 Abootalebi O, Kermanpur A, Shishesaz M R, et al. Optimizing the electrode position in sacrificial anode cathodic protection systems using boundary element method [J]. Corros. Sci., 2010, 52: 678
doi: 10.1016/j.corsci.2009.10.025
28 Warkus J, Raupach M, Gulikers J. Numerical modelling of corrosion-Theoretical backgrounds [J]. Mater. Corros., 2006, 57: 614
doi: 10.1002/(ISSN)1521-4176
29 Cao C N. Principles of Electrochemistry of Corrosion [M]. 3rd ed. Beijing: Chemical Industry Press, 2008
29 曹楚南. 腐蚀电化学原理(第三版) [M]. 第3版. 北京: 化学工业出版社, 2008
30 Qi J T, Li Y. Numerical simulation of cathodic protection field for the water phase area in naphtha storage tank [J]. Mar. Sci., 2012, 36(11): 79
30 齐建涛, 李焰. 海运石脑油储罐水相区阴极保护电场的数值模拟 [J]. 海洋科学, 2012, 36(11): 79
31 Fleck R N, Hanson D N, Tobias C W. Numerical Evaluation of Current Distribution in Electrochemical Systems [M]. Berkeley: University of California, 1964
32 Miyasaka M, Hashimoto K, Kishimoto K, et al. A boundary element analysis on galvanic corrosion problems—computational accuracy on galvanic fields with screen plates [J]. Corros. Sci., 1990, 30: 299
doi: 10.1016/0010-938X(90)90081-F
33 Sun H. Numerical simulation and construction of cathodic protection for crude oil tank's inner bottom plate [J]. Corros. Prot., 2013, 34: 937
33 孙 洪. 储罐内底板阴极保护效果的数值模拟及施工 [J]. 腐蚀与防护, 2013, 34: 937
34 Cao S S, Liang P T, Du M, et al. Numerical simulation of cathodic protection of 3D over-long pipeline [J]. Period. Ocean Univ. China, 2006, 36: 386
34 曹圣山, 梁娉婷, 杜 敏 等. 三维I型超长管线阴极保护的数值模拟 [J]. 中国海洋大学学报, 2006, 36: 386
35 Du Y X, Zhang G Z, Liu G, et al. Simulation of cathodic protection potential distribution on the exterior of storage tank bottom [J]. Acta Metall. Sin., 2007, 43: 297
35 杜艳霞, 张国忠, 刘 刚 等. 金属储罐底板外侧阴极保护电位分布的数值模拟 [J]. 金属学报, 2007, 43: 297
36 Zhang M D, Du Y L, Yin Z A, et al. Calculating potential distributions of cathodically protected subsea pipeline with finite difference method [J]. J. Chin. Soc. Corros. Prot., 1994, 14: 77
36 张鸣镝, 杜元龙, 殷正安 等. 有限差分法计算海底管道阴极保护时的电位分布 [J]. 中国腐蚀与防护学报, 1994, 14: 77
37 Wang W H, Yi J, Chen L, et al. Numerical simulation of transient process for corrosion environment in coating crevice with cathodic protection [J]. J. Comput. Theor. Nanosci., 2012, 9: 1395
doi: 10.1166/jctn.2012.2209
38 Kou J, Yin X M. Applied development of numerical calculation methods in cathodic protection of pipelines [J]. Corros. Prot., 2017, 38: 823
38 寇 杰, 尹雪明. 管道阴极保护数值计算方法的应用进展 [J]. 腐蚀与防护, 2017, 38: 823
39 Rabiot D, Dalard F, Rameau J J, et al. Study of sacrificial anode cathodic protection of buried tanks: Numerical modelling [J]. J. Appl. Electrochem., 1999, 29: 541
doi: 10.1023/A:1003408122084
40 Qiu F, Xu N X. Potential and current distributions on pipelines cathodically protected with ribbon sacrificialanodes [J]. J. Chin. Soc. Corros. Prot., 1997, 17: 106
40 邱 枫, 徐乃欣. 用带状牺牲阳极对埋地钢管实施阴极保护时的电位和电流分布 [J]. 中国腐蚀与防护学报, 1997, 17: 106
41 Chen X H, Chen H Y, Wang W B, et al. Notice of retraction: Numerical simulation of cathodic protection on buried X80 steel [A]. 2010 Sixth International Conference on Natural Computation [C]. Yantai: IEEE, 2010: 4097
42 Gadala I M, Wahab M A, Alfantazi A. Numerical simulations of soil physicochemistry and aeration influences on the external corrosion and cathodic protection design of buried pipeline steels [J]. Mater. Des., 2016, 97: 287
doi: 10.1016/j.matdes.2016.02.089
43 Xu L Y, Cheng Y F. Experimental and numerical studies of effectiveness of cathodic protection at corrosion defects on pipelines [J]. Corros. Sci., 2014, 78: 162
doi: 10.1016/j.corsci.2013.09.011
44 Santos W J, Santiago J A F, Telles J C F. An application of genetic algorithms and the method of fundamental solutions to simulate cathodic protection systems [J]. Comput. Model. Eng. Sci., 2012, 87: 23
45 Velten S B, Santos W J, Brasil S L D C, et al. A study of meshless methods for optimization of cathodic protection systems [J]. Eng. Anal. Bound. Elem., 2019, 107: 233
doi: 10.1016/j.enganabound.2019.07.017
46 Liang X W, Wu Z Y, Meng X J, et al. Study on the computer assistant optimization design for the regional cathodic protection system [J]. J. Tianjin Inst. Textile Sci. Technol., 1998, 17(5): 90
46 梁旭巍, 吴中元, 孟宪级 等. 油田区域性阴极保护计算机辅助优化设计研究 [J]. 天津工业大学学报, 1998, 17(5): 90
47 Guo Y, Hu A K, Dong H T. Numerical simulation of cathodic protection system [A]. Advanced Materials Research [C]. Trans Tech Publications Ltd, 2012, 548: 682
48 Brichau F, Deconinck J. A numerical model for cathodic protection of buried pipes [J]. Corrosion, 1994, 50: 39
doi: 10.5006/1.3293492
49 Brichau F, Deconinck J, Driesens T. Modeling of underground cathodic protection stray currents [J]. Corrosion, 1996, 52: 480
doi: 10.5006/1.3292137
50 Brasil S, Telles J C F, Miranda L R M. Simulation of coating failures on cathodically protected pipelines-experimental and numerical results [J]. Corrosion, 2000, 56: 1180
doi: 10.5006/1.3294402
51 Lu X P, Wu W L. A new subregion boundary element technique based on the domain decomposition method [J]. Eng. Anal. Bound. Elem., 2005, 29: 944
doi: 10.1016/j.enganabound.2005.08.001
52 Zhang F, Chen H Y, Li G D, et al. The application of numerical simulation in cathodic protection of pipelines and stations [J]. Oil Gas Storage Transp., 2011, 30: 208
52 张 丰, 陈洪源, 李国栋 等. 数值模拟在管道和站场阴极保护中的应用 [J]. 油气储运, 2011, 30: 208
53 Liu L Q, Wang H T. Fast boundary element method based on a 3D pipe model for analyzing cathodic protection [J]. J. Tsinghua Univ. (Sci. Technol.), 2015, 55: 1003
53 刘立祺, 王海涛. 基于三维管道模型的快速边界元法在阴极保护分析中的应用 [J]. 清华大学学报(自然科学版), 2015, 55: 1003
54 Li J Q. Numerical simulation research of cathodic protection in buried metal pipeline [D]. Xi'an: Xi'an Shiyou University, 2015
54 李佳奇. 埋地金属管道的管外阴极保护数值模拟研究 [D]. 西安: 西安石油大学, 2015
55 Muharemovic A, Zildzo H, Behlilovic N, et al. Numerical model for calculation of parameters of cathodic protection system with galvanic anodes [A]. 2009 XXII International Symposium on Information, Communication and Automation Technologies [C]. Sarajevo, Bosnia and Herzegovina: IEEE, 2009: 1
56 Nishikata A, Ichihara Y, Tsuru T. An application of electrochemical impedance spectroscopy to atmospheric corrosion study [J]. Corros. Sci., 1995, 37: 897
doi: 10.1016/0010-938X(95)00002-2
57 Yadav A P, Suzuki F, Nishikata A, et al. Investigation of atmospheric corrosion of Zn using ac impedance and differential pressure meter [J]. Electrochim. Acta, 2004, 49: 2725
doi: 10.1016/j.electacta.2004.01.033
58 Chen Y C, Wang X H, Wang C, et al. Cathodic protection parameters of X65 and X80 pipeline steels in Dagang simulated soil solution [J]. Surf. Technol., 2018, 47: 218
59 Wang L W, Cheng L J, Li J R, et al. Combined effect of alternating current interference and cathodic protection on pitting corrosion and stress corrosion cracking behavior of X70 pipeline steel in near-neutral pH environment [J]. Materials, 2018, 11: 465
doi: 10.3390/ma11040465
60 Quan B. Research on numerical simulation and optimization of cathodic protection potential distribution of long distance pipeline [D]. Xi'an: Xi'an Shiyou University, 2021
60 权 勃. 长输管道阴极保护电位分布的数值模拟与优化研究 [D]. 西安: 西安石油大学, 2021
61 Liao P Y, Chang Y, Yan J. Electrochemical method on the optimum cathodic protection potential of grounding grid in high resistivity soil [A]. 2020 IEEE Power & Energy Society General Meeting (PESGM) [C]. Montreal, QC, Canada: IEEE, 2020: 1
62 Bazzoni B, Lorenzi S, Marcassoli P, et al. Current and potential distribution modeling for cathodic protection of tank bottoms [J]. Corrosion, 2011, 67: 026001
63 Adey R, Baynham J. Computer simulation as an aid to CP system design and interference prediction [A]. CEOCOR 2000 Conference [C]. Brussels, Belgium, 2000
64 Xia Z C. Calculation of cathodic protection potential distribution on the outer side of the bottom plate of above-ground steel storage tanks [D]. Dalian: Dalian University of Technology, 2000
64 夏宗春. 地面钢质贮罐底板外侧阴极保护电位分布计算 [D]. 大连: 大连理工大学, 2000
65 Chen Q Y, Guan J Y. Overview of soil corrosion measurement technology [J]. New Technol. New Prod. China, 2015, (8): 42
65 陈秋烨, 关继业. 土壤腐蚀测量技术概述 [J]. 中国新技术新产品, 2015, (8): 42
66 Tan Y C, Zhong M J, Chen C, et al. Analysis of soil resistivity test [J]. Meteor. Hydrol. Mar. Instrum., 2021, 38(1): 11
66 谭永池, 钟鸣峻, 陈 超 等. 土壤电阻率测试分析 [J]. 气象水文海洋仪器, 2021, 38(1): 11
67 Yuan L L. Study on cathodic protection potential distribution characteristics of large storage tanks [D]. Chengdu: Southwest Petroleum University, 2018
67 袁铃岚. 大型储罐底板的阴极保护电位分布特征研究 [D]. 成都: 西南石油大学, 2018
68 Du Y X. An investigation of the cathodic protection potential distribution on the exterior of steel tank bottom [D]. Qingdao: China University of Petroleum (East China), 2007
68 杜艳霞. 金属储罐底板外侧阴极保护电位分布规律研究 [D]. 青岛: 中国石油大学(华东), 2007
69 Dong L W. Research on the distribution of cathodic protection potential on the floor of adjacent crude oil storage tanks on the ground [D]. Chengdu: Southwest Petroleum University, 2016
69 董龙伟. 地面相邻原油储罐底板阴极保护电位分布研究 [D]. 成都: 西南石油大学, 2016
[1] 马凯军, 王萌萌, 史振龙, 陈长风, 贾小兰. 温度对原油储罐罐底微生物腐蚀影响规律的研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 1051-1057.
[2] 王炳钦, 张晓莲, 雍兴跃, 周欢, 高新华. 舰船海水管系中紫铜/钢制管道耦接后电偶腐蚀的数值模拟研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 200-210.
[3] 王彭生, 李传夫, 倪静姁. 硅烷保护混凝土结构耐久性提升分析与寿命计算[J]. 中国腐蚀与防护学报, 2021, 41(5): 712-716.
[4] 寇杰, 张新策, 崔淦, 杨宝安. 储罐底板阴极保护电位分布研究进展[J]. 中国腐蚀与防护学报, 2017, 37(4): 305-314.
[5] 陈旭;李晓刚;杜翠薇; 梁平. 溶液环境对模拟剥离涂层下X70钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2010, 30(1): 35-40.
[6] 杜艳霞 . 阴极保护电位分布的数值计算[J]. 中国腐蚀与防护学报, 2008, 28(1): 53-58 .
[7] 曹圣山; 孙吉星 . 阴极保护设计问题的优化模型[J]. 中国腐蚀与防护学报, 2007, 27(2): 114-118 .
[8] 杜艳霞; 张国忠 . 储罐底板外侧阴极保护电位分布的数值模拟[J]. 中国腐蚀与防护学报, 2006, 26(6): 346-350 .
[9] 张际标; 王燕华; 姜应律 . 微液滴现象与大气腐蚀——Ⅱ. 微液滴现象的电化学表征[J]. 中国腐蚀与防护学报, 2006, 26(5): 282-285 .
[10] 王燕华; 王佳; 张际标 . AZ91D镁合金微弧氧化过程中的火花放电现象研究[J]. 中国腐蚀与防护学报, 2006, 26(5): 267-271 .
[11] 王佳 . 气相环境中无机盐微粒沉积金属表面的电位分布[J]. 中国腐蚀与防护学报, 2004, 24(1): 1-5 .
[12] 李正奉; 毛旭辉; 甘复兴 . 阴极保护下缝隙内的电位分布[J]. 中国腐蚀与防护学报, 2000, 20(3): 129-134 .
[13] 邱枫;徐乃欣. 用带状牺牲阳极对埋地钢管实施阴极保护时的电位和电流分布[J]. 中国腐蚀与防护学报, 1997, 17(2): 106-110.
[14] 邱枫;徐乃欣. 码头钢管桩阴极保护时的电位分布[J]. 中国腐蚀与防护学报, 1997, 17(1): 12-18.
[15] 邱枫;徐乃欣. 钢质贮罐底板外侧阴极保护时的电位分布[J]. 中国腐蚀与防护学报, 1996, 16(1): 29-36.