Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (4): 746-754     CSTR: 32134.14.1005.4537.2023.147      DOI: 10.11902/1005.4537.2023.147
  中国腐蚀与防护学会杰出青年成就奖论文专栏 本期目录 | 过刊浏览 |
低合金钢中夹杂物诱发局部腐蚀萌生机制的研究进展
刘超, 陈天奇, 李晓刚()
北京科技大学 新材料技术研究院 国家材料腐蚀与防护科学数据中心 北京 100083
Research Progress on Initiation Mechanism of Local Corrosion Induced by Inclusions in Low Alloy Steel
LIU Chao, CHEN Tianqi, LI Xiaogang()
National Materials Corrosion and Protection Data Center, Institute of Advanced Materials & Technology, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(9516 KB)   HTML
摘要: 

夹杂物作为钢中不可避免的冶金缺陷,常会诱发局部腐蚀的萌生,进而对材料的耐蚀性能产生较大的影响。针对近年来各类夹杂物诱发局部腐蚀萌生的机理争议,本文总结了夹杂物诱发局部腐蚀萌生和发展的作用机制,包括电偶腐蚀机制、化学溶解机制和电偶腐蚀-化学溶解机制。夹杂物的化学成分、尺寸以及形状等是诱发局部腐蚀的关键影响因素。最后,对夹杂物诱发局部腐蚀机理研究和耐蚀钢调控的未来研究方向提出了展望。

关键词 夹杂物低合金钢局部腐蚀腐蚀机制耐蚀性调控    
Abstract

Inclusions are inevitable metallurgical defects in steel that can significantly impact the corrosion resistance of materials by inducing local corrosion initiation. The mechanisms related with the initiation and development of inclusion-induced localized corrosion have been the subject of controversy in recent years. This paper provides a comprehensive review of the various mechanisms of inclusion-induced localized corrosion, including electrochemical corrosion, chemical dissolution, and electrochemical-chemical dissolution mechanisms. In addition, controlling the formation and behavior of inclusions is crucial for improving the corrosion resistance of steel, while the chemical composition, size and shape of the inclusions are the key influencing factors for inducing localized corrosion. Finally, the future research directions for the study of inclusions-induced local corrosion mechanism and the regulation of corrosion-resistant steel are discussed.

Key wordsinclusion    low alloy steel    localized corrosion    corrosion mechnism    corrosion resistance regulation
收稿日期: 2023-05-08      32134.14.1005.4537.2023.147
ZTFLH:  TG172  
基金资助:国家自然科学基金(52104319)
通讯作者: 李晓刚,E-mail: lixiaogang99@263.net,研究方向为自然环境腐蚀机理,腐蚀大数据理论与技术和耐蚀新材料研发   
Corresponding author: LI Xiaogang, E-mail: lixiaogang99@263.net   
作者简介: 刘超,男,1988年生,博士,副研究员,2019 年毕业于北京科技大学,师从李晓刚教授。现就职于北京科技大学,副教授,比利 时布鲁塞尔自由大学和美国麻省理工学院访问学者。主要研究方向为自然环境下材料腐蚀机理与规律研 究和耐蚀新材料研发。立足国家重大战略及材料腐蚀防护实际需求,揭示自然环境下材料中多尺度缺陷 及微观组织结构诱发腐蚀萌生的机理与规律,首次在微纳米尺度揭示了钢中各类夹杂物诱发局部腐蚀萌 生的微区化学-电化学机制,探明了各类夹杂物化学成分、尺寸结构和界面缺陷等特性对局部腐蚀萌生的影 响规律;系统揭示了Sb、Cu、Ca、RE和Te 等微合金元素对材料耐蚀性的影响机理。在此基础上研发了系列 化耐蚀低合金钢,在我国川藏线大渡河大桥和冬奥场馆等重点工程中得到应用。先后主持国家自然科学 基金青年项目和中国博士后基金2 项,参与国家自然科学基金重点基金和国家重点研发项目等国家/省部级项目4 项,主持/参 与校企合作项目16 项。在Corros. Sci. 和 JMST等高水平期刊发表SCI 论文30 余篇,参编专著1 部,授权专利9 项,参编团体标 准55 项,先后获北京市科学技术发明一等奖、湖北省科学技术二等奖和中国腐蚀与防护学会科学技术一等奖。2023 年获得中 国腐蚀与防护学会杰出青年学术成就奖。

引用本文:

刘超, 陈天奇, 李晓刚. 低合金钢中夹杂物诱发局部腐蚀萌生机制的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(4): 746-754.
LIU Chao, CHEN Tianqi, LI Xiaogang. Research Progress on Initiation Mechanism of Local Corrosion Induced by Inclusions in Low Alloy Steel. Journal of Chinese Society for Corrosion and protection, 2023, 43(4): 746-754.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2023.147      或      https://www.jcscp.org/CN/Y2023/V43/I4/746

图1  3种冶金缺陷的LEIS的线性扫描结果[7]及Y-S-O夹杂物诱发点蚀萌生和发展的机理[12]
图2  Al2O3,ZrO2-Ti2O3-Al2O3和(RE)2O2S-(RE) x S y -(RE, Zr, Ti)O x 的SEM谱,CAAFM以及相应的高度/电流分布图;在pH=4.9的西沙模拟液中浸泡30 min后ZrO2-Ti2O3-Al2O3和(RE)2O2S-(RE) x S y -(RE,Zr,Ti)O x -(RE)AlO3的腐蚀形貌及Al2O3和ZrO2-Ti2O3-Al2O3的KAM图,高KAM代表钢基体的局部塑性变形发生在不易变形的夹杂物周围,且机械形变会导致表面电化学异质性的重新分布[16~19]
图3  在NS4溶液中浸泡24 h后Al-Ca-O-S夹杂物上形成的典型腐蚀坑[22,23]
图4  MnS表面电势分布,MnS不同晶面的表面功函数图及MnS诱发局部腐蚀的机理图[29]
图5  Al2O3表面和截面形貌,EBSD测试区域和相应的KAM图[18]
图6  TiN夹杂物的SEM图,EDS,TEM图像和SAD结果,TiN夹杂物和SiO2之间的界面形貌及纯Ti样品上形成的钝化膜的TiO2 2p3/2和TiO2 2p1/2峰的XPS光谱[25]
图7  Al2O3-MgO-CaO系统相图中活性/非活性夹杂物的成分分布[45]和能带结构图[12]
1 Hou B R, Li X G, Ma X M, et al. The cost of corrosion in China [J]. npj Mater. Degrad., 2017, 1: 4
doi: 10.1038/s41529-017-0005-2
2 Li X G, Zhang D W, Liu Z Y, et al. Materials science: share corrosion data [J]. Nature, 2015, 527: 441
doi: 10.1038/527441a
3 Wei J, Dong J H, Ke W, et al. Influence of inclusions on early corrosion development of ultra-low carbon bainitic steel in NaCl solution [J]. Corrosion, 2015, 71: 1467
doi: 10.5006/1837
4 Ryan M P, Williams D E, Chater R J, et al. Why stainless steel corrodes [J]. Nature, 2002, 415: 770
doi: 10.1038/415770a
5 Stewart J, Williams D E. The initiation of pitting corrosion on austenitic stainless steel: on the role and importance of sulphide inclusions [J]. Corros. Sci., 1992, 33: 457
doi: 10.1016/0010-938X(92)90074-D
6 Suter T, Böhni H. A new microelectrochemical method to study pit initiation on stainless steels [J]. Electrochim. Acta, 1997, 42: 3275
doi: 10.1016/S0013-4686(70)01783-8
7 Jin T Y, Cheng Y F. In situ characterization by localized electrochemical impedance spectroscopy of the electrochemical activity of microscopic inclusions in an X100 steel [J]. Corros. Sci., 2011, 53: 850
doi: 10.1016/j.corsci.2010.11.026
8 Park I J, Lee S M, Kang M, et al. Pitting corrosion behavior in advanced high strength steels [J]. J. Alloy. Compd., 2015, 619: 205
doi: 10.1016/j.jallcom.2014.08.243
9 Xue W, Li Z L, Xiao K, et al. Initial microzonal corrosion mechanism of inclusions associated with the precipitated (Ti, Nb)N phase of Sb-containing weathering steel [J]. Corros. Sci., 2020, 163: 108232
doi: 10.1016/j.corsci.2019.108232
10 Su H Y, Wei S C, Liang Y, et al. Pitting behaviors of low-alloy high strength steel in neutral 3.5 wt% NaCl solution based on in situ observations [J]. J. Electroanal. Chem., 2020, 863: 114056
doi: 10.1016/j.jelechem.2020.114056
11 Zheng S J, Wang Y J, Zhang B, et al. Identification of MnCr2O4 nano-octahedron in catalysing pitting corrosion of austenitic stainless steels [J]. Acta Mater., 2010, 58: 5070
doi: 10.1016/j.actamat.2010.05.043
12 Hou Y H, Li T F, Li G Q, et al. Mechanism of Yttrium composite inclusions on the localized corrosion of pipeline steels in NaCl solution [J]. Micron, 2020, 130: 102820
doi: 10.1016/j.micron.2019.102820
13 Reformatskaya I I, Rodionova I G, Beilin Y A, et al. The effect of nonmetal inclusions and microstructure on local corrosion of carbon and low-alloyed steels [J]. Protect. Met., 2004, 40: 447
doi: 10.1023/B:PROM.0000043062.19272.c5
14 Andreatta F, Terryn H, de Wit J H W. Corrosion behaviour of different tempers of AA7075 aluminium alloy [J]. Electrochim. Acta, 2004, 49: 2851
doi: 10.1016/j.electacta.2004.01.046
15 Zhang T Y, Li Y L, Li X, et al. Integral effects of Ca and Sb on the corrosion resistance for the high strength low alloy steel in the tropical marine environment [J]. Corros. Sci., 2022, 208: 110708
doi: 10.1016/j.corsci.2022.110708
16 Liu C, Revilla R I, Zhang D W, et al. Role of Al2O3 inclusions on the localized corrosion of Q460NH weathering steel in marine environment [J]. Corros. Sci., 2018, 138: 96
doi: 10.1016/j.corsci.2018.04.007
17 Liu C, Jiang Z H, Zhao J B, et al. Influence of rare earth metals on mechanisms of localised corrosion induced by inclusions in Zr-Ti deoxidised low alloy steel [J]. Corros. Sci., 2020, 166: 108463
doi: 10.1016/j.corsci.2020.108463
18 Liu C, Li X, Revilla R I, et al. Towards a better understanding of localised corrosion induced by typical non-metallic inclusions in low-alloy steels [J]. Corros. Sci., 2021, 179: 109150
doi: 10.1016/j.corsci.2020.109150
19 Liu C, Revilla R I, Liu Z Y, et al. Effect of inclusions modified by rare earth elements (Ce, La) on localized marine corrosion in Q460NH weathering steel [J]. Corros. Sci., 2017, 129: 82
doi: 10.1016/j.corsci.2017.10.001
20 Kim S T, Jeon S H, Lee I S, et al. Effects of rare earth metals addition on the resistance to pitting corrosion of super duplex stainless steel-Part 1 [J]. Corros. Sci., 2010, 52: 1897
doi: 10.1016/j.corsci.2010.02.043
21 Liu P, Zhang Q H, Li X R, et al. Insight into the triggering effect of (Al, Mg, Ca, Mn)-oxy-sulfide inclusions on localized corrosion of weathering steel [J]. J. Mater. Sci. Technol., 2021, 64: 99
doi: 10.1016/j.jmst.2020.06.031
22 Wang L W, Xin J C, Cheng L J, et al. Influence of inclusions on initiation of pitting corrosion and stress corrosion cracking of X70 steel in near-neutral pH environment [J]. Corros. Sci., 2019, 147: 108
doi: 10.1016/j.corsci.2018.11.007
23 Li G X, Wang L W, Wu H L, et al. Dissolution kinetics of the sulfide-oxide complex inclusion and resulting localized corrosion mechanism of X70 steel in deaerated acidic environment [J]. Corros. Sci., 2020, 174: 108815
doi: 10.1016/j.corsci.2020.108815
24 Liu C, Yuan H, Li X D, et al. Initiation mechanism of localized corrosion induced by Al2O3-MnS composite inclusion in low-alloy structural steel [J]. Metals, 2022, 12: 587
doi: 10.3390/met12040587
25 Liu C, Revilla R I, Li X, et al. New insights into the mechanism of localised corrosion induced by TiN-containing inclusions in high strength low alloy steel [J]. J. Mater. Sci. Technol., 2022, 124: 141
doi: 10.1016/j.jmst.2021.12.075
26 Zhang X W, Yang C F, Zhang L F. Effects of cooling rate and isothermal holding on the characteristics of MnS particles in high-carbon heavy rail steels [J]. Metall. Res. Technol., 2020, 117: 110
doi: 10.1051/metal/2020002
27 Vuillemin B, Philippe X, Oltra R, et al. SVET, AFM and AES study of pitting corrosion initiated on MnS inclusions by microinjection [J]. Corros. Sci., 2003, 45: 1143
doi: 10.1016/S0010-938X(02)00222-6
28 Hastuty S, Nishikata A, Tsuru T. Pitting corrosion of Type 430 stainless steel under chloride solution droplet [J]. Corros. Sci., 2010, 52: 2035
doi: 10.1016/j.corsci.2010.02.031
29 Hu J Z, Ren Y, Zhang J, et al. Review on pitting corrosion of steel induced by MnS inclusions [J]. China Metall, 2022, 32(11): 18
29 胡锦榛, 任 英, 张 继 等. MnS夹杂物诱发钢材点蚀综述 [J]. 中国冶金, 2022, 32(11): 18
30 Eklund G S. Initiation of pitting at sulfide inclusions in stainless steel [J]. J. Electrochem. Soc., 1974, 121: 467
doi: 10.1149/1.2401840
31 Zhang H R, Wu H Y, Wang S L, et al. Pitting behavior of Fe-based amorphous alloy with sulfide inclusion [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 477
31 张浩然, 吴鸿燕, 王善林 等. 含硫化物夹杂的铁基非晶合金点蚀规律 [J]. 中国腐蚀与防护学报, 2021, 41: 477
doi: 10.11902/1005.4537.2020.148
32 Meng Q, Frankel G S, Colijn H O, et al. High-resolution characterization of the region around manganese sulfide inclusions in stainless steel alloys [J]. Corrosion, 2004, 60: 346
doi: 10.5006/1.3287741
33 Schmuki P, Hildebrand H, Friedrich A, et al. The composition of the boundary region of MnS inclusions in stainless steel and its relevance in triggering pitting corrosion [J]. Corros. Sci., 2005, 47: 1239
doi: 10.1016/j.corsci.2004.05.023
34 Chiba A, Muto I, Sugawara Y, et al. A microelectrochemical system for in situ high-resolution optical microscopy: morphological characteristics of pitting at MnS inclusion in stainless steel [J]. J. Electrochem. Soc., 2012, 159: C341
doi: 10.1149/2.054208jes
35 Chiba A, Muto I, Sugawara Y, et al. Pit initiation mechanism at MnS inclusions in stainless steel: synergistic effect of elemental sulfur and chloride ions [J]. J. Electrochem. Soc., 2013, 160: C511
doi: 10.1149/2.081310jes
36 Meng F J, Wang J Q, Han E-H, et al. The role of TiN inclusions in stress corrosion crack initiation for Alloy 690TT in high-temperature and high-pressure water [J]. Corros. Sci., 2010, 52: 927
doi: 10.1016/j.corsci.2009.11.015
37 Hur D H, Han J H, Lee U C, et al. Microchemistry of Ti-carbonitrides and their role in the early stage of pit initiation of alloy 600 [J]. Corrosion, 2006, 62: 591
doi: 10.5006/1.3280673
38 Wang Y L, Yu W, Zhu R L, et al. Effect of complex inclusions on localized corrosion behavior in ferritic steel [J]. Steel Res. Int., 2023, 94: 2200719
doi: 10.1002/srin.v94.5
39 Verma N, Pistorius P C, Fruehan R J, et al. Transient inclusion evolution during modification of alumina inclusions by calcium in liquid steel: part I. Background, experimental techniques and analysis methods [J]. Metall. Mater. Trans., 2011, 42B: 711
40 Kim K Y, Chung Y H, Hwang Y H, et al. Effects of calcium modification on the electrochemical and corrosion properties of weathering steel [J]. Corrosion, 2002, 58: 479
doi: 10.5006/1.3277638
41 Coletti B, Blanpain B, Vantilt S, et al. Observation of calcium aluminate inclusions at interfaces between Ca-treated, Al-killed steels and slags [J]. Metall. Mater. Trans., 2003, 34B: 533
42 Yang S F, Li J S, Wang Z F, et al. Modification of MgO·Al2O3 spinel inclusions in Al-killed steel by Ca-treatment [J]. Int. J. Miner. Metall. Mater., 2011, 18: 18
doi: 10.1007/s12613-011-0394-0
43 Wang Y H, Zhang X, Cheng L, et al. Correlation between active/inactive (Ca, Mg, Al)-O x -S y inclusions and localised marine corrosion of EH36 steels [J]. J. Mater. Res. Technol., 2021, 13: 2419
doi: 10.1016/j.jmrt.2021.06.030
44 Xue H B, Cheng Y F. Characterization of inclusions of X80 pipeline steel and its correlation with hydrogen-induced cracking [J]. Corros. Sci., 2011, 53: 1201
doi: 10.1016/j.corsci.2010.12.011
45 Zhu T W, Huang F, Liu J, et al. Effects of inclusion on corrosion resistance of weathering steel in simulated industrial atmosphere [J]. Anti-Corros. Methods Mater., 2016, 63: 490
doi: 10.1108/ACMM-05-2015-1538
46 Ma H C, Liu Z Y, Du C W, et al. Stress corrosion cracking of E690 steel as a welded joint in a simulated marine atmosphere containing sulphur dioxide [J]. Corros. Sci., 2015, 100: 627
doi: 10.1016/j.corsci.2015.08.039
47 Yu D Y, Liu Z Y, Du C W, et al. Research progress and prospect of stress corrosion cracking of pipeline steel in soil environments [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 737
47 余德远, 刘智勇, 杜翠薇 等. 管线钢土壤应力腐蚀开裂研究进展及展望 [J]. 中国腐蚀与防护学报, 2021, 41: 737
doi: 10.11902/1005.4537.2020.211
48 Yue L J, Wang L M, Han J S. Effects of rare earth on inclusions and corrosion resistance of 10PCuRE weathering steel [J]. J. Rare Earths, 2010, 28: 952
doi: 10.1016/S1002-0721(09)60219-2
49 Hou Y H, Xiong G, Liu L L, et al. Effects of LaAlO3 and La2O2S inclusions on the initialization of localized corrosion of pipeline steels in NaCl solution [J]. Scr. Mater., 2020, 177: 151
doi: 10.1016/j.scriptamat.2019.10.025
50 Huang F, Li J, Geng R M, et al. Effect of rare earth on inclusion evolution and corrosion resistance of HRB400E steel [J]. Mater. Corros., 2023, 74: 53
[1] 李强, 路程, 唐颖浩, 唐建峰, 刘炳成. 湿气管道积液区X70CO2 局部腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 837-846.
[2] 邓成满, 刘喆, 夏大海, 胡文彬. 5083-H111铝合金在模拟动态海水环境中的局部腐蚀机制[J]. 中国腐蚀与防护学报, 2023, 43(4): 683-692.
[3] 王瑾, 宁培栋, 刘倩倩, 陈娜娜, 张新, 肖葵. 模拟海洋大气环境中镀锌钢的腐蚀行为和机理[J]. 中国腐蚀与防护学报, 2023, 43(3): 578-586.
[4] 黄家和, 袁曦, 陈文, 闫文静, 金正宇, 柳海宪, 刘宏芳, 刘宏伟. 温度对CO2饱和页岩气压裂液环境中N80和TP125V钢腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 251-260.
[5] 彭浩, 程晓英, 李晓亮, 王兆丰, 蔡贞祥. 高强度低合金钢中V和Nb对氢陷阱的影响[J]. 中国腐蚀与防护学报, 2023, 43(2): 415-420.
[6] 毛英畅, 祝钰, 孙圣凯, 秦真波, 夏大海, 胡文彬. 5083铝合金在模拟海洋浪花飞溅区的局部腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(1): 47-54.
[7] 庞涛, 刘静, 黄峰, 李闯, 赵国知, 黄先球, 郑建国, 程鹏. 武汉地铁钢轨在典型隧道环境中的腐蚀现状分析[J]. 中国腐蚀与防护学报, 2022, 42(5): 798-804.
[8] 高秋英, 徐亦璇, 胡鹏伟, 姚田万, 齐文龙. 天然气再生塔底重沸器腐蚀与防护技术研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 699-704.
[9] 赵海洋, 高多龙, 张童, 吕由, 张宇鹏, 张欣欣, 石鑫, 魏晓静, 刘冬梅, 董泽华. 电弧增材制造航空AA2024铝合金的微观结构及其腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 621-628.
[10] 张泽群, 陈质彬, 董其娟, 邬聪, 李宗欣, 王禾祖, 吴飞, 张博威, 吴俊升. 低合金钢、不锈钢和铝镁合金在模拟深海环境中的电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 417-424.
[11] 朱延山, 张继明, 武凤娟, 曲锦波. X65抗酸管线钢中非金属夹杂物和氢致开裂裂纹的分析及预测[J]. 中国腐蚀与防护学报, 2022, 42(1): 169-174.
[12] 吕祥鸿, 马晓凤, 胡兆伟, 李媛媛, 王晨. T/S-52K直缝钢在不同Cl-浓度下的腐蚀行为[J]. 中国腐蚀与防护学报, 2021, 41(4): 555-559.
[13] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[14] 郏义征, 赵明君, 程世婧, 王保杰, 王硕, 盛立远, 许道奎. 模拟人体体液中镁合金的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 463-468.
[15] 史伟宁,杨树峰,李京社. 不锈钢中诱发局部腐蚀的贫Cr区研究进展[J]. 中国腐蚀与防护学报, 2019, 39(4): 281-290.