|
|
低合金钢中夹杂物诱发局部腐蚀萌生机制的研究进展 |
刘超, 陈天奇, 李晓刚( ) |
北京科技大学 新材料技术研究院 国家材料腐蚀与防护科学数据中心 北京 100083 |
|
Research Progress on Initiation Mechanism of Local Corrosion Induced by Inclusions in Low Alloy Steel |
LIU Chao, CHEN Tianqi, LI Xiaogang( ) |
National Materials Corrosion and Protection Data Center, Institute of Advanced Materials & Technology, University of Science and Technology Beijing, Beijing 100083, China |
1 |
Hou B R, Li X G, Ma X M, et al. The cost of corrosion in China [J]. npj Mater. Degrad., 2017, 1: 4
doi: 10.1038/s41529-017-0005-2
|
2 |
Li X G, Zhang D W, Liu Z Y, et al. Materials science: share corrosion data [J]. Nature, 2015, 527: 441
doi: 10.1038/527441a
|
3 |
Wei J, Dong J H, Ke W, et al. Influence of inclusions on early corrosion development of ultra-low carbon bainitic steel in NaCl solution [J]. Corrosion, 2015, 71: 1467
doi: 10.5006/1837
|
4 |
Ryan M P, Williams D E, Chater R J, et al. Why stainless steel corrodes [J]. Nature, 2002, 415: 770
doi: 10.1038/415770a
|
5 |
Stewart J, Williams D E. The initiation of pitting corrosion on austenitic stainless steel: on the role and importance of sulphide inclusions [J]. Corros. Sci., 1992, 33: 457
doi: 10.1016/0010-938X(92)90074-D
|
6 |
Suter T, Böhni H. A new microelectrochemical method to study pit initiation on stainless steels [J]. Electrochim. Acta, 1997, 42: 3275
doi: 10.1016/S0013-4686(70)01783-8
|
7 |
Jin T Y, Cheng Y F. In situ characterization by localized electrochemical impedance spectroscopy of the electrochemical activity of microscopic inclusions in an X100 steel [J]. Corros. Sci., 2011, 53: 850
doi: 10.1016/j.corsci.2010.11.026
|
8 |
Park I J, Lee S M, Kang M, et al. Pitting corrosion behavior in advanced high strength steels [J]. J. Alloy. Compd., 2015, 619: 205
doi: 10.1016/j.jallcom.2014.08.243
|
9 |
Xue W, Li Z L, Xiao K, et al. Initial microzonal corrosion mechanism of inclusions associated with the precipitated (Ti, Nb)N phase of Sb-containing weathering steel [J]. Corros. Sci., 2020, 163: 108232
doi: 10.1016/j.corsci.2019.108232
|
10 |
Su H Y, Wei S C, Liang Y, et al. Pitting behaviors of low-alloy high strength steel in neutral 3.5 wt% NaCl solution based on in situ observations [J]. J. Electroanal. Chem., 2020, 863: 114056
doi: 10.1016/j.jelechem.2020.114056
|
11 |
Zheng S J, Wang Y J, Zhang B, et al. Identification of MnCr2O4 nano-octahedron in catalysing pitting corrosion of austenitic stainless steels [J]. Acta Mater., 2010, 58: 5070
doi: 10.1016/j.actamat.2010.05.043
|
12 |
Hou Y H, Li T F, Li G Q, et al. Mechanism of Yttrium composite inclusions on the localized corrosion of pipeline steels in NaCl solution [J]. Micron, 2020, 130: 102820
doi: 10.1016/j.micron.2019.102820
|
13 |
Reformatskaya I I, Rodionova I G, Beilin Y A, et al. The effect of nonmetal inclusions and microstructure on local corrosion of carbon and low-alloyed steels [J]. Protect. Met., 2004, 40: 447
doi: 10.1023/B:PROM.0000043062.19272.c5
|
14 |
Andreatta F, Terryn H, de Wit J H W. Corrosion behaviour of different tempers of AA7075 aluminium alloy [J]. Electrochim. Acta, 2004, 49: 2851
doi: 10.1016/j.electacta.2004.01.046
|
15 |
Zhang T Y, Li Y L, Li X, et al. Integral effects of Ca and Sb on the corrosion resistance for the high strength low alloy steel in the tropical marine environment [J]. Corros. Sci., 2022, 208: 110708
doi: 10.1016/j.corsci.2022.110708
|
16 |
Liu C, Revilla R I, Zhang D W, et al. Role of Al2O3 inclusions on the localized corrosion of Q460NH weathering steel in marine environment [J]. Corros. Sci., 2018, 138: 96
doi: 10.1016/j.corsci.2018.04.007
|
17 |
Liu C, Jiang Z H, Zhao J B, et al. Influence of rare earth metals on mechanisms of localised corrosion induced by inclusions in Zr-Ti deoxidised low alloy steel [J]. Corros. Sci., 2020, 166: 108463
doi: 10.1016/j.corsci.2020.108463
|
18 |
Liu C, Li X, Revilla R I, et al. Towards a better understanding of localised corrosion induced by typical non-metallic inclusions in low-alloy steels [J]. Corros. Sci., 2021, 179: 109150
doi: 10.1016/j.corsci.2020.109150
|
19 |
Liu C, Revilla R I, Liu Z Y, et al. Effect of inclusions modified by rare earth elements (Ce, La) on localized marine corrosion in Q460NH weathering steel [J]. Corros. Sci., 2017, 129: 82
doi: 10.1016/j.corsci.2017.10.001
|
20 |
Kim S T, Jeon S H, Lee I S, et al. Effects of rare earth metals addition on the resistance to pitting corrosion of super duplex stainless steel-Part 1 [J]. Corros. Sci., 2010, 52: 1897
doi: 10.1016/j.corsci.2010.02.043
|
21 |
Liu P, Zhang Q H, Li X R, et al. Insight into the triggering effect of (Al, Mg, Ca, Mn)-oxy-sulfide inclusions on localized corrosion of weathering steel [J]. J. Mater. Sci. Technol., 2021, 64: 99
doi: 10.1016/j.jmst.2020.06.031
|
22 |
Wang L W, Xin J C, Cheng L J, et al. Influence of inclusions on initiation of pitting corrosion and stress corrosion cracking of X70 steel in near-neutral pH environment [J]. Corros. Sci., 2019, 147: 108
doi: 10.1016/j.corsci.2018.11.007
|
23 |
Li G X, Wang L W, Wu H L, et al. Dissolution kinetics of the sulfide-oxide complex inclusion and resulting localized corrosion mechanism of X70 steel in deaerated acidic environment [J]. Corros. Sci., 2020, 174: 108815
doi: 10.1016/j.corsci.2020.108815
|
24 |
Liu C, Yuan H, Li X D, et al. Initiation mechanism of localized corrosion induced by Al2O3-MnS composite inclusion in low-alloy structural steel [J]. Metals, 2022, 12: 587
doi: 10.3390/met12040587
|
25 |
Liu C, Revilla R I, Li X, et al. New insights into the mechanism of localised corrosion induced by TiN-containing inclusions in high strength low alloy steel [J]. J. Mater. Sci. Technol., 2022, 124: 141
doi: 10.1016/j.jmst.2021.12.075
|
26 |
Zhang X W, Yang C F, Zhang L F. Effects of cooling rate and isothermal holding on the characteristics of MnS particles in high-carbon heavy rail steels [J]. Metall. Res. Technol., 2020, 117: 110
doi: 10.1051/metal/2020002
|
27 |
Vuillemin B, Philippe X, Oltra R, et al. SVET, AFM and AES study of pitting corrosion initiated on MnS inclusions by microinjection [J]. Corros. Sci., 2003, 45: 1143
doi: 10.1016/S0010-938X(02)00222-6
|
28 |
Hastuty S, Nishikata A, Tsuru T. Pitting corrosion of Type 430 stainless steel under chloride solution droplet [J]. Corros. Sci., 2010, 52: 2035
doi: 10.1016/j.corsci.2010.02.031
|
29 |
Hu J Z, Ren Y, Zhang J, et al. Review on pitting corrosion of steel induced by MnS inclusions [J]. China Metall, 2022, 32(11): 18
|
29 |
胡锦榛, 任 英, 张 继 等. MnS夹杂物诱发钢材点蚀综述 [J]. 中国冶金, 2022, 32(11): 18
|
30 |
Eklund G S. Initiation of pitting at sulfide inclusions in stainless steel [J]. J. Electrochem. Soc., 1974, 121: 467
doi: 10.1149/1.2401840
|
31 |
Zhang H R, Wu H Y, Wang S L, et al. Pitting behavior of Fe-based amorphous alloy with sulfide inclusion [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 477
|
31 |
张浩然, 吴鸿燕, 王善林 等. 含硫化物夹杂的铁基非晶合金点蚀规律 [J]. 中国腐蚀与防护学报, 2021, 41: 477
doi: 10.11902/1005.4537.2020.148
|
32 |
Meng Q, Frankel G S, Colijn H O, et al. High-resolution characterization of the region around manganese sulfide inclusions in stainless steel alloys [J]. Corrosion, 2004, 60: 346
doi: 10.5006/1.3287741
|
33 |
Schmuki P, Hildebrand H, Friedrich A, et al. The composition of the boundary region of MnS inclusions in stainless steel and its relevance in triggering pitting corrosion [J]. Corros. Sci., 2005, 47: 1239
doi: 10.1016/j.corsci.2004.05.023
|
34 |
Chiba A, Muto I, Sugawara Y, et al. A microelectrochemical system for in situ high-resolution optical microscopy: morphological characteristics of pitting at MnS inclusion in stainless steel [J]. J. Electrochem. Soc., 2012, 159: C341
doi: 10.1149/2.054208jes
|
35 |
Chiba A, Muto I, Sugawara Y, et al. Pit initiation mechanism at MnS inclusions in stainless steel: synergistic effect of elemental sulfur and chloride ions [J]. J. Electrochem. Soc., 2013, 160: C511
doi: 10.1149/2.081310jes
|
36 |
Meng F J, Wang J Q, Han E-H, et al. The role of TiN inclusions in stress corrosion crack initiation for Alloy 690TT in high-temperature and high-pressure water [J]. Corros. Sci., 2010, 52: 927
doi: 10.1016/j.corsci.2009.11.015
|
37 |
Hur D H, Han J H, Lee U C, et al. Microchemistry of Ti-carbonitrides and their role in the early stage of pit initiation of alloy 600 [J]. Corrosion, 2006, 62: 591
doi: 10.5006/1.3280673
|
38 |
Wang Y L, Yu W, Zhu R L, et al. Effect of complex inclusions on localized corrosion behavior in ferritic steel [J]. Steel Res. Int., 2023, 94: 2200719
doi: 10.1002/srin.v94.5
|
39 |
Verma N, Pistorius P C, Fruehan R J, et al. Transient inclusion evolution during modification of alumina inclusions by calcium in liquid steel: part I. Background, experimental techniques and analysis methods [J]. Metall. Mater. Trans., 2011, 42B: 711
|
40 |
Kim K Y, Chung Y H, Hwang Y H, et al. Effects of calcium modification on the electrochemical and corrosion properties of weathering steel [J]. Corrosion, 2002, 58: 479
doi: 10.5006/1.3277638
|
41 |
Coletti B, Blanpain B, Vantilt S, et al. Observation of calcium aluminate inclusions at interfaces between Ca-treated, Al-killed steels and slags [J]. Metall. Mater. Trans., 2003, 34B: 533
|
42 |
Yang S F, Li J S, Wang Z F, et al. Modification of MgO·Al2O3 spinel inclusions in Al-killed steel by Ca-treatment [J]. Int. J. Miner. Metall. Mater., 2011, 18: 18
doi: 10.1007/s12613-011-0394-0
|
43 |
Wang Y H, Zhang X, Cheng L, et al. Correlation between active/inactive (Ca, Mg, Al)-O x -S y inclusions and localised marine corrosion of EH36 steels [J]. J. Mater. Res. Technol., 2021, 13: 2419
doi: 10.1016/j.jmrt.2021.06.030
|
44 |
Xue H B, Cheng Y F. Characterization of inclusions of X80 pipeline steel and its correlation with hydrogen-induced cracking [J]. Corros. Sci., 2011, 53: 1201
doi: 10.1016/j.corsci.2010.12.011
|
45 |
Zhu T W, Huang F, Liu J, et al. Effects of inclusion on corrosion resistance of weathering steel in simulated industrial atmosphere [J]. Anti-Corros. Methods Mater., 2016, 63: 490
doi: 10.1108/ACMM-05-2015-1538
|
46 |
Ma H C, Liu Z Y, Du C W, et al. Stress corrosion cracking of E690 steel as a welded joint in a simulated marine atmosphere containing sulphur dioxide [J]. Corros. Sci., 2015, 100: 627
doi: 10.1016/j.corsci.2015.08.039
|
47 |
Yu D Y, Liu Z Y, Du C W, et al. Research progress and prospect of stress corrosion cracking of pipeline steel in soil environments [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 737
|
47 |
余德远, 刘智勇, 杜翠薇 等. 管线钢土壤应力腐蚀开裂研究进展及展望 [J]. 中国腐蚀与防护学报, 2021, 41: 737
doi: 10.11902/1005.4537.2020.211
|
48 |
Yue L J, Wang L M, Han J S. Effects of rare earth on inclusions and corrosion resistance of 10PCuRE weathering steel [J]. J. Rare Earths, 2010, 28: 952
doi: 10.1016/S1002-0721(09)60219-2
|
49 |
Hou Y H, Xiong G, Liu L L, et al. Effects of LaAlO3 and La2O2S inclusions on the initialization of localized corrosion of pipeline steels in NaCl solution [J]. Scr. Mater., 2020, 177: 151
doi: 10.1016/j.scriptamat.2019.10.025
|
50 |
Huang F, Li J, Geng R M, et al. Effect of rare earth on inclusion evolution and corrosion resistance of HRB400E steel [J]. Mater. Corros., 2023, 74: 53
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|