中国腐蚀与防护学报, 2023, 43(4): 746-754 DOI: 10.11902/1005.4537.2023.147

中国腐蚀与防护学会杰出青年成就奖论文专栏

低合金钢中夹杂物诱发局部腐蚀萌生机制的研究进展

刘超, 陈天奇, 李晓刚,

北京科技大学 新材料技术研究院 国家材料腐蚀与防护科学数据中心 北京 100083

Research Progress on Initiation Mechanism of Local Corrosion Induced by Inclusions in Low Alloy Steel

LIU Chao, CHEN Tianqi, LI Xiaogang,

National Materials Corrosion and Protection Data Center, Institute of Advanced Materials & Technology, University of Science and Technology Beijing, Beijing 100083, China

通讯作者: 李晓刚,E-mail:lixiaogang99@263.net,研究方向为自然环境腐蚀机理,腐蚀大数据理论与技术和耐蚀新材料研发

收稿日期: 2023-05-08   修回日期: 2023-05-30  

基金资助: 国家自然科学基金.  52104319

Corresponding authors: LI Xiaogang, E-mail:lixiaogang99@263.net

Received: 2023-05-08   Revised: 2023-05-30  

Fund supported: National Natural Science Foundation of China.  52104319

作者简介 About authors

刘超,男,1988年生,博士,副研究员,2019年毕业于北京科技大学,师从李晓刚教授。现就职于北京科技大学,副教授,比利时布鲁塞尔自由大学和美国麻省理工学院访问学者。主要研究方向为自然环境下材料腐蚀机理与规律研究和耐蚀新材料研发。立足国家重大战略及材料腐蚀防护实际需求,揭示自然环境下材料中多尺度缺陷及微观组织结构诱发腐蚀萌生的机理与规律,首次在微纳米尺度揭示了钢中各类夹杂物诱发局部腐蚀萌生的微区化学-电化学机制,探明了各类夹杂物化学成分、尺寸结构和界面缺陷等特性对局部腐蚀萌生的影响规律;系统揭示了Sb、Cu、Ca、RE和Te等微合金元素对材料耐蚀性的影响机理。在此基础上研发了系列化耐蚀低合金钢,在我国川藏线大渡河大桥和冬奥场馆等重点工程中得到应用。先后主持国家自然科学基金青年项目和中国博士后基金2项,参与国家自然科学基金重点基金和国家重点研发项目等国家/省部级项目4项,主持/参与校企合作项目16项。在Corros.Sci.和JMST等高水平期刊发表SCI论文30余篇,参编专著1部,授权专利9项,参编团体标准55项,先后获北京市科学技术发明一等奖、湖北省科学技术二等奖和中国腐蚀与防护学会科学技术一等奖。2023年获得中国腐蚀与防护学会杰出青年学术成就奖。

摘要

夹杂物作为钢中不可避免的冶金缺陷,常会诱发局部腐蚀的萌生,进而对材料的耐蚀性能产生较大的影响。针对近年来各类夹杂物诱发局部腐蚀萌生的机理争议,本文总结了夹杂物诱发局部腐蚀萌生和发展的作用机制,包括电偶腐蚀机制、化学溶解机制和电偶腐蚀-化学溶解机制。夹杂物的化学成分、尺寸以及形状等是诱发局部腐蚀的关键影响因素。最后,对夹杂物诱发局部腐蚀机理研究和耐蚀钢调控的未来研究方向提出了展望。

关键词: 夹杂物 ; 低合金钢 ; 局部腐蚀 ; 腐蚀机制 ; 耐蚀性调控

Abstract

Inclusions are inevitable metallurgical defects in steel that can significantly impact the corrosion resistance of materials by inducing local corrosion initiation. The mechanisms related with the initiation and development of inclusion-induced localized corrosion have been the subject of controversy in recent years. This paper provides a comprehensive review of the various mechanisms of inclusion-induced localized corrosion, including electrochemical corrosion, chemical dissolution, and electrochemical-chemical dissolution mechanisms. In addition, controlling the formation and behavior of inclusions is crucial for improving the corrosion resistance of steel, while the chemical composition, size and shape of the inclusions are the key influencing factors for inducing localized corrosion. Finally, the future research directions for the study of inclusions-induced local corrosion mechanism and the regulation of corrosion-resistant steel are discussed.

Keywords: inclusion ; low alloy steel ; localized corrosion ; corrosion mechnism ; corrosion resistance regulation

PDF (9516KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

刘超, 陈天奇, 李晓刚. 低合金钢中夹杂物诱发局部腐蚀萌生机制的研究进展. 中国腐蚀与防护学报[J], 2023, 43(4): 746-754 DOI:10.11902/1005.4537.2023.147

LIU Chao, CHEN Tianqi, LI Xiaogang. Research Progress on Initiation Mechanism of Local Corrosion Induced by Inclusions in Low Alloy Steel. Journal of Chinese Society for Corrosion and Protection[J], 2023, 43(4): 746-754 DOI:10.11902/1005.4537.2023.147

金属腐蚀作为一种不可避免的自然现象,不仅极大地增加了金属材料服役过程中的失效风险,造成安全事故,同时也增大了金属设备的运维成本和经济损失。据报道[1, 2],每年为腐蚀支付的费用通常要占每个国家国民生产总值的1%~5%左右。局部腐蚀相对于均匀腐蚀而言具有更强的隐蔽性,往往难以预估和控制,且局部腐蚀一旦发生,其快速的扩展速度往往成为灾难性事故的起源。显微组织 (如夹杂物、沉淀相和M/A岛) 与钢基体之间的物化性质的差异是导致低合金钢局部腐蚀的主要因素[3],而夹杂物作为钢中典型的结构缺陷,与低合金钢局部腐蚀的发生高度相关[4~6]。因此,阐明夹杂物诱发局部腐蚀的影响规律以及作用机理对于开发耐蚀低合金钢具有深远意义。

本文主要综述了典型非金属夹杂物对低合金钢局部腐蚀的影响规律,系统地总结了夹杂物诱发低合金钢局部腐蚀的作用机制,并对夹杂物诱导低合金钢局部腐蚀的未来研究方向提出了展望。

1 夹杂物诱发低合金钢局部腐蚀萌生的微观机制

由于在冶金过程中选取的脱氧剂和微合金元素不同,低合金钢中会形成各种类型的夹杂物,如TiN,MnS,Al2O3,ZrO2,Ti2O3和 (Ca, Mg, Al, Si)O x 等。非金属夹杂物化学成分对其诱发局部腐蚀萌生的微观机制存在显著的影响。目前低合金钢中夹杂物诱发局部腐蚀萌生的微观机制主要分为电化学溶解 (电偶腐蚀) 机制、化学溶解机制和化学-电化学溶解耦合作用机制3类。

第一种机理为电化学溶解机制,该机理认为钢基体中的Al2O3 [7]、MnS-Al2O3[8]、(Ti, Nb)N[9]、(Ca, Mn)S-(Mg, Al)O[10]、MnCr2O4/MnS[11]和YS[12]等夹杂可以和钢基体构成腐蚀电偶,夹杂物作为阴极相或阳极相诱发局部腐蚀的萌生。判断夹杂物是否作为阴/阳极相的方法主要包括微区电化学法 (如局部交流阻抗LEIS[13]、表面电势法[14])、带隙法[6]及夹杂物的腐蚀形态[3, 5]。夹杂物及其周围基体存在电化学不均匀性,而夹杂物的局部电化学活性主要与成分相关。Jin等[7]通过局部交流阻抗谱 (LEIS) 表征了近中性环境下夹杂物和X100钢基体之间的电化学异质性,作者指出Al2O3夹杂物区域相较于基体表现出较高的局部阻抗 (如图1所示),在和钢基体构成的腐蚀电偶中,它被认为是电化学腐蚀过程中的阴极相。类似地,由于富SiO2夹杂的局部阻抗比基体低,它被视为阳极相,这与Park等[8]的研究结果保持一致。Zhang等[15]通过SKPFM表征了E690低合金钢中MnS·Al2O3夹杂物的电化学特性,结果表明MnS·Al2O3和基体之间的表面电势差为80 mV左右,并指出基体和MnS部分构成腐蚀电偶。图1b展示了Y-S-O夹杂物诱发点蚀萌生和发展的机理图[12]。腐蚀性离子Cl-在Y2O3和基体之间的微缝隙聚集并破坏表面的钝化膜,在内应力和腐蚀介质的共同作用下,微缝隙得以进一步扩大。金属基体、YS以及表面钝化膜形成腐蚀微电偶,其中YS作为阳极相优先溶解,完全溶解后的YS留下了形成的点蚀坑进一步加剧局部腐蚀发展。因此,从上述文献可知,电偶腐蚀机制主要揭示了钢基体和夹杂物之间的电偶效应,腐蚀电偶既可以通过促进钢铁基体溶解,也可以通过促进夹杂物自身溶解诱发局部腐蚀萌生。

图1

图1   3种冶金缺陷的LEIS的线性扫描结果[7]及Y-S-O夹杂物诱发点蚀萌生和发展的机理[12]

Fig.1   Linear scan results of LEIS for three metallurgical defects (a) [7], A, B and C being Si-rich inclusions, micropores and carbides, respectively, where the resistance at both A and B points is less than the substrate, whereas the resistance at C is greater than the substrate; mechanism diagram of pitting initiation and development induced by Y-S-O inclusions (b) [12], in which YS is preferentially dissolved as anodic phase and formed a corrosion microcouple with substrate and surface passivation film to induce local pitting initiation


第二种机理为化学溶解机制,该机制认为钢中绝缘非金属夹杂物 (如Al2O3[16]等) 由于自身导电性较差,无法与钢基体构成腐蚀电偶,因此腐蚀主要由化学溶解过程引发。根据夹杂物自身的化学稳定性可分为两种情形:若夹杂物自身化学稳定性差,其主要通过自身的化学溶解形成点蚀坑,诱发点蚀萌生和发展。若夹杂物自身稳定性好,则夹杂物自身不发生溶解,而通过夹杂物与基体之间的性能差异,如塑性和热膨胀系数等,造成钢基体局部高电化学活性,最终导致夹杂物周围钢基体的溶解。Liu等研究表明,Al2O3[16],ZrO2-Ti2O3-Al2O3[17]和 (RE)AlO3-(RE)2O2S-(RE) x S y[18, 19]等均为绝缘体,图2a中Al2O3的CSAFM结果表明夹杂物处的电流值仅为0~2 pA,而基体部分的电流值为5 nA,远大于夹杂物处的电流值,证实Al2O3为绝缘性夹杂,无法和钢基体构成腐蚀电偶。图2bc中ZrO2-Ti2O3-Al2O3夹杂和(RE)2O2S-(RE) x S y -(RE,Zr,Ti)O x -(RE)AlO3夹杂物同样被证明为绝缘体,不能与基体构成腐蚀电偶。而图2d中可以看到,在西沙模拟液中浸泡30 min后,ZrO2-Ti2O3-Al2O3夹杂并未溶解,这可以归因于该夹杂物自身具有较高的化学稳定性。对比之下,(RE)2O2S-(RE) x S y -(RE,Zr,Ti)O x -(RE)AlO3中(RE)2O2S-(RE) x S y 由于较差的化学稳定性而自身溶解。Liu的工作让研究者们认识到[16~19],仅仅采用电偶腐蚀理论解释和理解夹杂物诱发局部腐蚀是不可接受的,绝缘非金属夹杂物诱发局部腐蚀可能是一种不同于电偶腐蚀的全新机理。根据Gutman的电化学理论[20]图2e中绝缘体夹杂物ZrO2-Ti2O3-Al2O3附近的高晶格畸变区域增强了基体的反应活性,高活性钢基体与周围非高活性区域钢基体之间可能形成电偶腐蚀,这为非金属夹杂物诱发局部腐蚀的解释提供了新的思路。从上述文献的结果中可以看出,对于不导电或导电性差的非金属夹杂物,其诱导局部腐蚀萌生的机理不同于MnS等导电夹杂物,微缝隙或夹杂物周围高化学活性的区域可能成为诱发点蚀的主因。Hu等[21]通过SKPFM测试证实了 (Al, Mg, Ca, Mn)-氧硫复合夹杂物与基体之间的局部电化学不均匀性,结果表明该夹杂物的Volta电位高于基体,但电流密度仅为8 pA,因此传统的微电偶腐蚀机制并不适用。相比之下,EBSD测试结果表明该夹杂物周围存在高晶格畸变和位错密度,这使得夹杂物周围基体成为热力学不稳定区域,成为优先腐蚀的部分。

图2

图2   Al2O3,ZrO2-Ti2O3-Al2O3和(RE)2O2S-(RE) x S y -(RE, Zr, Ti)O x 的SEM谱,CAAFM以及相应的高度/电流分布图;在pH=4.9的西沙模拟液中浸泡30 min后ZrO2-Ti2O3-Al2O3和(RE)2O2S-(RE) x S y -(RE,Zr,Ti)O x -(RE)AlO3的腐蚀形貌及Al2O3和ZrO2-Ti2O3-Al2O3的KAM图,高KAM代表钢基体的局部塑性变形发生在不易变形的夹杂物周围,且机械形变会导致表面电化学异质性的重新分布[16~19]

Fig.2   SEM and CAAFM images of Al2O3(a), ZrO2-Ti2O3-Al2O3 (b) and (Re)2O2S-(Re) x S y -(Re, Zr, Ti)O x (c) and their corresponding height/current distribution diagrams, corrosion morphology of ZrO2-Ti2O3-Al2O3 and ((RE)2O2S-(RE) x S y -(RE,Zr,Ti)O x -(RE)AlO3 after soaking in simulated Xisha solution with pH=4.9 for 30 min (d), and KAM diagrams of Al2O3 and ZrO2-Ti2O3-Al2O3 (e). The high KAM indicates that the local plastic deformation of the steel matrix occurs around the inclusion which is difficult to deform, and the mechanical deformation will lead to the redistribution of the surface electrochemical heterogeneity [16~19]


第3种机理为化学溶解-电化学溶解耦合机制。如图3a~d所示,Wang等[22]研究表明CaS溶解后会在周围形成圆形的保护区域,激光共聚焦显微镜的2D和3D结果图证实了CaS溶解形成的坑洞周围的高度比基体高度还要高,说明可能该区域形成了阴极保护区,相对应的机理如图3e所示。此外,Li等[23]同样也观察到CaS在无氧的酸性环境下发生水解并在周围形成阴极保护区,而不是形成孔隙或空穴,该区域与蚀坑及其周围基体可形成腐蚀电偶,加速局部腐蚀发展。作者团队前期在含TiN复合夹杂和Al2O3-MnS夹杂低合金钢中局部腐蚀萌生机制的研究中证实了夹杂物与钢基体之间多重电化学-化学溶解作用机制。如低合金钢中Al2O3-MnS夹杂中的MnS为导电性夹杂,可以和钢基体构成腐蚀电偶,且会以阳极相的形式优先发生溶解,溶解后形成富HS-,S2-和H+的局部酸化环境,促进Al2O3的溶解,进而诱发局部腐蚀的萌生[24]。而在CaS·xMgO·yAl2O3·TiN复合夹杂中,TiN具有良好的导电性,可以和钢基体构成腐蚀电偶,作为阴极相,促进钢基体的溶解,同时由于CaS较差的稳定性,也会发生较快的溶解,形成局部酸化环境后,诱发xMgO·yAl2O3的溶解[25]

图3

图3   在NS4溶液中浸泡24 h后Al-Ca-O-S夹杂物上形成的典型腐蚀坑[22,23]

Fig.3   Typical corrosion pits formed on Al-Ca-O-S inclusions after 24 h immersion in NS4 solution: (a) optical image, (b) 2D image, (c) three-dimensional profile, (d) height line, where the position of the cross-sectional profile is marked in Fig.3b as a red line [22], (e) schematic of dissolution kinetics of sulfide-oxide complex inclusions and the resulting local corrosion process: the original inclusions underwent the galvanic corrosion stage and the corrosion spreading stage, respectively [23]


2 几种典型夹杂物对低合金钢局部腐蚀的影响规律

2.1 硫化物系夹杂

夹杂物作为点蚀主要起源对钢的耐蚀性有重要影响,而硫化物,特别是最常见的MnS夹杂物,对钢材的耐腐蚀性能有极大危害已成为共识。MnS夹杂物不论是在活化体系还是钝化体系中都是诱发局部腐蚀的敏感位点。尽管通过调整连铸、轧制和热处理等方式可以有效降低夹杂物的尺寸和数量[8, 26],但MnS的存在是冶金领域至今未解决的问题之一。

MnS诱导点蚀的机理主要包括电偶腐蚀和贫Cr区诱发腐蚀等机理。在钝化体系中,Vuillemin等[27]研究表明,不锈钢中的MnS夹杂物首先容易溶解,在稀酸和强酸环境中成为点蚀的起源。夹杂物溶解后产生的H+、HS-和H2S将阻碍坑内的再钝化过程,这将促进附近基体的进一步溶解。图4a显示了MnS夹杂物表面电势分布和不同晶面的表面功函数[28]。SKPFM的结果表明MnS夹杂物的表面电势要低于周围基体,说明MnS相比于基体具有优先溶解的趋势,此外,图4b中第一性原理的计算表明MnS各个晶面的功函数小于基体,因此MnS可作为阳极相发生溶解[29]。Eklund[30]研究表明,根据MnS-H2O-Cl溶液体系的Pourbaix图,不锈钢中的MnS夹杂物不能稳定存在。在MnS溶解后,其周围富集的Cr溶解在含Cl-溶液中,继续发生水解,进一步造成微孔隙中环境的局部酸化,并最终导致了点蚀的发生,这很好的验证了第一性原理的计算结果。尽管此前关于MnS作为阳极相优先溶解诱发点蚀的报道很多,但是其机理依然存在争议。Ryan和Mary等[4]指出,由MnS夹杂物诱发的局部腐蚀是由于其周围形成的贫Cr区,含Cr钢材冷却时,可能向MnS传质导致MnS周围的基体Cr含量急剧降低并围绕MnS形成几十至几百纳米厚的贫Cr区。由于Cr可以形成致密氧化膜,因此贫Cr区正是最容易被腐蚀介质侵入的区域[31]。然而,Meng等[32]和Schmuki[33]指出,不锈钢中MnS夹杂物周围没有形成贫铬区。他们认为,MnS夹杂物以阴极相的形式诱发了周围钢基体的溶解。

图4

图4   MnS表面电势分布,MnS不同晶面的表面功函数图及MnS诱发局部腐蚀的机理图[29]

Fig.4   Surface potential distribution of MnS (a), surface work function of different crystal faces of MnS (b), the results show that the work function of MnS is smaller than that of Fe matrix, and mechanism diagram of local corrosion induced by MnS (c), MnS is used as an anodic corrosion couple with steel substrate to form steady or metastable pitting pits under the synergistic effect of Cl-and S, and the corrosion product “S” shell covers the surface of pitting pits to form concentration difference cells, further promote the corrosion process [29]


在含有Cl-的近中性溶液环境中,Chiba等[34,35]研究了304不锈钢在0.1 mol/L Na2SO4和3.0 mol/L NaCl溶液中的极化曲线。结果表明,在3.0 mol/L的NaCl溶液中有明显的阳极电流波动,相关的腐蚀形貌也可观察到夹杂物及周围基体形成了点蚀坑,观察经过聚焦离子束加工后的MnS夹杂物与基体之间的沟槽发现,其已经出现了纵向扩展。在MnS夹杂物/钢基体的边界形成微孔隙是不锈钢发生点蚀的前兆。MnS在溶解过程中会生成腐蚀产物S2O32-,H2S,HS-等,这些腐蚀产物会进一步转化为S,此外,随着蚀坑的形成和局部酸化条件的形成,MnS与H+也会反应产生S,如下式所示。

S2O32-+2H+=S+SO2+H2O
H2S=S+2H++2e-
HS-=S+H++2e-
MnS+2H+=Mn2++S+H2

因此,MnS夹杂物的局部溶解加剧了S在夹杂物周围的沉积,而在Cl-和S的协同作用下,基体与MnS夹杂物界面处会产生微孔隙,MnS夹杂物诱发局部腐蚀的机理图见图4c

2.2 氧化物系夹杂

Al2O3和SiO2夹杂物广泛存在于管线钢中[31]。Al2O3和SiO2以及其他的氧化物具有较高的电化学活性,在腐蚀萌生的过程中会持续溶解形成蚀坑,并形成酸化自催化电池和氧浓差效应,加速稳定蚀坑的形成[16, 17]。Liu等[18]研究了低合金钢中典型氧化物系夹杂物如Al2O3,ZrO2和Ti2O3等,并观察到这些氧化物系夹杂趋向于化学溶解而并非电化学溶解,图5a显示了Al2O3夹杂物的表面形貌、截面形貌以及EBSD结果。从表面和截面形貌可以证实Al2O3与基体之间存在微孔隙,KAM图证实与Al2O3相邻的基体存在高晶格畸变,符合化学溶解机理的特征。Wang等[22]认为由于夹杂物与基体之间具有不同的热膨胀系数,Al2O3与基体之间形成的微缝隙是点蚀起源,随着孔隙内部Cl-的聚集以及pH值的降低,促进了Al2O3的溶解和局部腐蚀的发生,这和此前Liu[18]的实验结果是一致的。Al2O3夹杂物硬且脆,与金属基体不连续。Al2O3夹杂物通常为链状或纹理状,在轧制和粘结过程中容易断裂,在与金属基体的交界处容易产生微裂纹和缝隙,进而诱发局部腐蚀的萌生。

图5

图5   Al2O3表面和截面形貌,EBSD测试区域和相应的KAM图[18]

Fig.5   Surface morphology (a), cross-sectional morphology (b), EBSD test region (c) and corresponding KAM plots (d) of Al2O3 [18]


2.3 氮化物系夹杂

在高温冶炼过程中,Nb、V和Ti对C和N有很高的亲和力,在适当的条件下,可以形成稳定的沉淀物。这些沉淀物可以阻碍奥氏体晶粒的生长,抑制加热过程中的再结晶,也可以抑制轧制过程中再结晶后的晶粒生长,这有助于提高材料的机械性能。与MnS夹杂物相比,奥氏体不锈钢或低合金钢中的TiN更稳定,在高温水溶液中几乎不溶解[36]。然而,许多文献指出,TiN和钢基体之间存在较高的位错密度[36,37]。在应力作用下,钢中高硬度TiN周围的钢基体的塑性应变逐渐增大,这将导致钢基体的电化学活性提高,诱发局部腐蚀的萌生。Wang等[38]通过原位腐蚀实验的方法研究了TiN对低碳钢在模拟大气污染环境中的点蚀行为影响,结果表明,Al2O3-TiN复合夹杂物在腐蚀介质中的稳定性要显著高于Al2O3,且TiN周围的基体并未出现明显的溶解现象,说明TiN有较好的抗点蚀性能。Liu等[25]对于含TiN夹杂物的高强低合金钢局部腐蚀提供了新的见解,认为TiN可以在溶液中形成TiO2,并推断表面覆盖了TiO2的TiN作为阴极相,这是不同于此前文献报道的一种新的机制。

2.4 CaRE改性夹杂物

随着第三代氧化物冶金技术的广泛应用,Al脱氧Ca处理和Mg-Al脱氧Ca处理技术日趋成熟,钙处理对钢中夹杂物的改性作用对钢基体耐蚀性产生了重要影响。Ca处理后,钢中夹杂物的尺寸明显减小,对夹杂物的成分、形状和尺寸的控制作用明显[39]。经Ca处理后,钢中高硬度、不规则的Al2O3夹杂物转变为xCaO-yAl2O3复合氧化物夹杂物,其硬度低、呈球状,并可能伴随着xCaS-yCaO-zAl2O3复合氧化物夹杂物的形成[40]。在各种经Ca处理改性的铝酸钙和xCaO-yAl2O3化合物中,12CaO-7Al2O3(最低熔点1455 ℃)是一种理想的改性产物,可以降低原夹杂物与钢基体之间的应力[41, 42]。Wang等[43]研究了EH36钢中(Ca, Mg, Al)-O x -S y 夹杂物和局部腐蚀的关联,图7a显示了Al2O3-MgO-CaO三元相图,CaO:Al2O3比例约为1.25是区分活性和非活性夹杂物的界限,且通过对比和计算夹杂物和基体之前的热膨胀系数和残余应力,验证了非活性夹杂物3CaO·Al2O3周围不存在明显的局部塑形变形,说明其并不会诱发点蚀。Ca处理不仅可以改性非金属氧化物夹杂物,也可以改性硫化物夹杂物。相关研究表明在X80钢管生产线中,Ca处理还可以将条状的MnS夹杂物转化为球形的CaS夹杂物和 (Ca, Mn)S复合夹杂物,降低夹杂物与钢基体之间的应力。同时,含Ca的夹杂物在腐蚀过程中可通过水解生成OH-,降低了近表面腐蚀介质的酸度,减缓了腐蚀速度[44]。Zhu等[45]也得到了类似的结论,即CaS等夹杂物有助于降低近表面腐蚀介质的酸度,提高pH值,防止酸性腐蚀介质对钢基体的进一步腐蚀。经过Ca处理后,在Ca氧化物外层析出的带有硫化物和氮化物的微纳复合夹杂物可以有效地促进针状铁素体的成核,诱导针状铁素体的形成[34]。针状铁素体的纵横交错的结构可以有效地抑制裂纹的增长,减少应力腐蚀开裂的风险。Ca处理后会产生大量的 (Ca、Mg、Mn)S、SiO2和CaS夹杂物,其中CaS夹杂物的耐腐蚀性最差,这被认为是诱发焊接区腐蚀萌生和扩展的主要因素[46,47]

图6

图6   TiN夹杂物的SEM图,EDS,TEM图像和SAD结果,TiN夹杂物和SiO2之间的界面形貌及纯Ti样品上形成的钝化膜的TiO2 2p3/2和TiO2 2p1/2峰的XPS光谱[25]

Fig.6   SEM image and EDS results (a), TEM image and SAD result (b) of TiN inclusions, interface morphology between TiN inclusions and SiO2 (c), and XPS spectra of TiO2 2p3/2 and TiO2 2p1/2 peaks of passivation film formed on pure Ti sample (d) [25]


图7

图7   Al2O3-MgO-CaO系统相图中活性/非活性夹杂物的成分分布[45]和能带结构图[12]

Fig.7   Composition distribution of active/inactive inclusions in the phase diagram of the Al2O3-MgO-CaO system (a) [45] and MgS (b), MgY2S4 (c), Y2O3 (d) and YS (e) energy band structure diagram [12]


由于稀土元素与O和S结合力强,常作为微合金元素加入钢中净化钢。同时,稀土元素会优先与钢中的S发生反应,从而避免MnS的形成,而将大部分夹杂物转变为球状或近球状的稀土硫化物或稀土氧化物/硫化物[48]。带隙可以在一定程度上反映材料自身的导电能力,通常带隙超过5 eV可被认为是绝缘体,典型的绝缘体夹杂物Al2O3的带隙为6.154 eV[49]。Hou等[12]通过浸泡实验结合第一性原理计算的方法研究了稀土元素Y对管线钢在NaCl溶液中的局部腐蚀行为,图7b~e展示了四类夹杂物 (包括MgS,、MgY2S4、Y2O3和YS) 的能带结构,能带结构的结果 (带隙<5 eV) 证实了这4类夹杂物具有良好的电导性,并能和基体构成腐蚀电偶,其作用机理为电偶腐蚀机制。Huang[50]等研究了稀土元素Ce和La改性的HRB400E,其耐蚀性增加,这主要可以归因于稀土改性后的夹杂物主要呈球形,降低了微缝隙的形成和对钝化膜的破坏。

3 总结及展望

随着现代物理化学的迅猛发展,亟需开发原位/准原位的研究和检测技术,以实施对腐蚀全过程的动态检测,尤其是对局部微小区域的监测。准确判断夹杂物及其周围局部腐蚀,优先腐蚀的起源对于阐明夹杂物诱发局部腐蚀的机理至关重要。因此,高分辨微区显微技术,包括微区电化学,将成为未来探明夹杂物诱发局部腐蚀的首选工具。此外,有必要结合热力学计算,明确夹杂物物化特性、尺寸、形状以及在钢材中的分布,以及诱发应力腐蚀开裂的临界尺寸等,合理调控夹杂物诱发局部腐蚀萌生的关键因素也是提升低合金钢耐蚀能力的可行途径之一。最后,随着现代信息技术的成熟,建立高效的理论计算模型可以大大节约实验成本,并为理解夹杂物诱发局部腐蚀提供思路和指引。

本工作主要总结了夹杂物诱发局部腐蚀的机理和典型夹杂物如硫化物系夹杂、氧化物系夹杂、氮化物系夹杂以及Ca、RE改性夹杂诱发局部腐蚀的作用规律。目前,夹杂物诱发局部腐蚀萌生的机理解释可分为3种:电偶腐蚀机理、化学溶解机理和化学溶解-电化学溶解腐蚀机理。夹杂物的化学成分对其诱发局部腐蚀萌生的机理起着决定性作用,不同种类夹杂物诱发局部腐蚀萌生的机制应准确区分,以实现在耐蚀钢生产过程中根据夹杂物的特性进行精准调控。

参考文献

Hou B R, Li X G, Ma X M, et al.

The cost of corrosion in China

[J]. npj Mater. Degrad., 2017, 1: 4

DOI      [本文引用: 1]

Corrosion is a ubiquitous and costly problem for a variety of industries. Understanding and reducing the cost of corrosion remain primary interests for corrosion professionals and relevant asset owners. The present study summarises the findings that arose from the landmark “Study of Corrosion Status and Control Strategies in China”, a key consulting project of the Chinese Academy of Engineering in 2015, which sought to determine the national cost of corrosion and costs associated with representative industries in China. The study estimated that the cost of corrosion in China was approximately 2127.8 billion RMB (~ 310 billion USD), representing about 3.34% of the gross domestic product. The transportation and electronics industries were the two that generated the highest costs among all those surveyed. Based on the survey results, corrosion is a major and significant issue, with several key general strategies to reduce the cost of corrosion also outlined.

Li X G, Zhang D W, Liu Z Y, et al.

Materials science: share corrosion data

[J]. Nature, 2015, 527: 441

DOI      [本文引用: 1]

Wei J, Dong J H, Ke W, et al.

Influence of inclusions on early corrosion development of ultra-low carbon bainitic steel in NaCl solution

[J]. Corrosion, 2015, 71: 1467

DOI      URL     [本文引用: 2]

The early corrosion development of ultra-low carbon bainitic (ULCB) low alloy steel in NaCl solution was studied by ex situ imaging of corrosion morphology and in situ monitoring of microarea current density and potential, and the corrosion mechanism from initial localized corrosion to uniform corrosion was interpreted. The results indicate that the corrosion development of ULCB steel from initial localized corrosion around inclusions to the uniform corrosion on the whole steel surface is controlled by the galvanic couple effect between different phases resulting from their electrode potential difference in electrolyte solution. The early localized corrosion of steel matrix is initiated and accelerated by the galvanic couple effect between MnS inclusions and steel matrix to form the initial corrosion gaps and the circular corrosion spots around inclusions. The ohmic drop caused by solution resistance influences the acceleration effect of the galvanic couple. With the separation of inclusion from steel matrix, this galvanic couple effect becomes invalid, which results in the expansion from localized corrosion to uniform corrosion. The microgalvanic couple between martensite/residual austenite (M/A) islands and bainite ferrite also accelerates the anodic dissolution of bainite ferrite phase; however, its acceleration corrosion effect is much weaker than that caused by MnS inclusion.

Ryan M P, Williams D E, Chater R J, et al.

Why stainless steel corrodes

[J]. Nature, 2002, 415: 770

DOI      [本文引用: 2]

Stewart J, Williams D E.

The initiation of pitting corrosion on austenitic stainless steel: on the role and importance of sulphide inclusions

[J]. Corros. Sci., 1992, 33: 457

DOI      URL     [本文引用: 1]

Suter T, Böhni H.

A new microelectrochemical method to study pit initiation on stainless steels

[J]. Electrochim. Acta, 1997, 42: 3275

DOI      URL     [本文引用: 2]

Jin T Y, Cheng Y F.

In situ characterization by localized electrochemical impedance spectroscopy of the electrochemical activity of microscopic inclusions in an X100 steel

[J]. Corros. Sci., 2011, 53: 850

DOI      URL     [本文引用: 4]

Park I J, Lee S M, Kang M, et al.

Pitting corrosion behavior in advanced high strength steels

[J]. J. Alloy. Compd., 2015, 619: 205

DOI      URL     [本文引用: 3]

Xue W, Li Z L, Xiao K, et al.

Initial microzonal corrosion mechanism of inclusions associated with the precipitated (Ti, Nb)N phase of Sb-containing weathering steel

[J]. Corros. Sci., 2020, 163: 108232

DOI      URL     [本文引用: 1]

Su H Y, Wei S C, Liang Y, et al.

Pitting behaviors of low-alloy high strength steel in neutral 3.5 wt% NaCl solution based on in situ observations

[J]. J. Electroanal. Chem., 2020, 863: 114056

DOI      URL     [本文引用: 1]

Zheng S J, Wang Y J, Zhang B, et al.

Identification of MnCr2O4 nano-octahedron in catalysing pitting corrosion of austenitic stainless steels

[J]. Acta Mater., 2010, 58: 5070

DOI      URL     [本文引用: 1]

Hou Y H, Li T F, Li G Q, et al.

Mechanism of Yttrium composite inclusions on the localized corrosion of pipeline steels in NaCl solution

[J]. Micron, 2020, 130: 102820

DOI      URL     [本文引用: 7]

Reformatskaya I I, Rodionova I G, Beilin Y A, et al.

The effect of nonmetal inclusions and microstructure on local corrosion of carbon and low-alloyed steels

[J]. Protect. Met., 2004, 40: 447

DOI      URL     [本文引用: 1]

Andreatta F, Terryn H, de Wit J H W.

Corrosion behaviour of different tempers of AA7075 aluminium alloy

[J]. Electrochim. Acta, 2004, 49: 2851

DOI      URL     [本文引用: 1]

Zhang T Y, Li Y L, Li X, et al.

Integral effects of Ca and Sb on the corrosion resistance for the high strength low alloy steel in the tropical marine environment

[J]. Corros. Sci., 2022, 208: 110708

DOI      URL     [本文引用: 1]

Liu C, Revilla R I, Zhang D W, et al.

Role of Al2O3 inclusions on the localized corrosion of Q460NH weathering steel in marine environment

[J]. Corros. Sci., 2018, 138: 96

DOI      URL     [本文引用: 6]

Liu C, Jiang Z H, Zhao J B, et al.

Influence of rare earth metals on mechanisms of localised corrosion induced by inclusions in Zr-Ti deoxidised low alloy steel

[J]. Corros. Sci., 2020, 166: 108463

DOI      URL     [本文引用: 2]

Liu C, Li X, Revilla R I, et al.

Towards a better understanding of localised corrosion induced by typical non-metallic inclusions in low-alloy steels

[J]. Corros. Sci., 2021, 179: 109150

DOI      URL     [本文引用: 5]

Liu C, Revilla R I, Liu Z Y, et al.

Effect of inclusions modified by rare earth elements (Ce, La) on localized marine corrosion in Q460NH weathering steel

[J]. Corros. Sci., 2017, 129: 82

DOI      URL     [本文引用: 4]

Kim S T, Jeon S H, Lee I S, et al.

Effects of rare earth metals addition on the resistance to pitting corrosion of super duplex stainless steel-Part 1

[J]. Corros. Sci., 2010, 52: 1897

DOI      URL     [本文引用: 1]

Liu P, Zhang Q H, Li X R, et al.

Insight into the triggering effect of (Al, Mg, Ca, Mn)-oxy-sulfide inclusions on localized corrosion of weathering steel

[J]. J. Mater. Sci. Technol., 2021, 64: 99

DOI      [本文引用: 1]

The surface properties of weathering steel (WS) is very important for its service performance and safety, and the localized corrosion induced by inclusions is closely related to the surface properties of WS and its application. In the current work, a common spherical (Al, Mg, Ca, Mn)-oxy-sulfide inclusion was selected to investigate the corrosion evolution of complex inclusion and its effect on localized corrosion on WS surface. The results indicate the inclusion in WS consists of (Ca, Mn) sulfides part and (Ca, Al, Mg) oxides part with complex core-shell structure. Locally preferential dissolution occurs in (Ca, Mn) sulfides part as well as metal matrix around the inclusions. Furthermore, both parts of the inclusions with poor conductivity and high-density dislocation at metal matrix around the inclusions was found, which suggests that traditional micro-galvanic corrosion cell may not be the cause of inclusion-induced localized corrosion on WS surface at initial stage of corrosion. The variation in maximum and average depth around the inclusion or selected region with immersion time indicates that localized corrosion induced by inclusions is overwhelmed by uniform corrosion of WS in the latter stage of immersion, then the rust formed on WS surface consists of two layers.

Wang L W, Xin J C, Cheng L J, et al.

Influence of inclusions on initiation of pitting corrosion and stress corrosion cracking of X70 steel in near-neutral pH environment

[J]. Corros. Sci., 2019, 147: 108

DOI      URL     [本文引用: 4]

Li G X, Wang L W, Wu H L, et al.

Dissolution kinetics of the sulfide-oxide complex inclusion and resulting localized corrosion mechanism of X70 steel in deaerated acidic environment

[J]. Corros. Sci., 2020, 174: 108815

DOI      URL     [本文引用: 3]

Liu C, Yuan H, Li X D, et al.

Initiation mechanism of localized corrosion induced by Al2O3-MnS composite inclusion in low-alloy structural steel

[J]. Metals, 2022, 12: 587

DOI      URL     [本文引用: 1]

The present work systematically investigated the initiation mechanism of localized corrosion induced by Al2O3-MnS composite inclusion in E690 steel under a simulated marine environment. The results showed that a micro-gap exists between the Al2O3-MnS inclusion and the matrix, and electron backscattered diffraction (EBSD) analysis revealed significant lattice dislocation zones around the Al2O3-MnS composite inclusion. The presence of the micro-gap and the lattice dislocation both promoted the localized corrosion initiation. The Volta potential of Al2O3 detected by scanning Kelvin probe force microscopy (SKPFM) was approximately 149.33 mV higher than that of the steel matrix, and the Volta potential of MnS was 10 mV lower than that of the steel matrix. The current-sensing atomic force microscopy (CSAFM) results showed that the Al2O3 was not conductive, while the MnS had good conductive properties. Therefore, it was not possible for a galvanic couple to be formed between Al2O3 and the adjacent steel matrix. A galvanic couple effect between the MnS and the adjacent steel matrix was directly demonstrated for the first time. The MnS acted as the anode phase for preferential dissolution in the corrosion process. The in situ immersion experiments and the Pourbaix diagram results confirmed that the dissolution of MnS was an electrochemical reaction process and the dissolution of Al2O3 was a chemical reaction.

Liu C, Revilla R I, Li X, et al.

New insights into the mechanism of localised corrosion induced by TiN-containing inclusions in high strength low alloy steel

[J]. J. Mater. Sci. Technol., 2022, 124: 141

DOI      [本文引用: 4]

This work investigated the chemical and electrochemical mechanisms of localised corrosion triggered by CaS·xMgO·yAl2O3·TiN complex inclusions in high strength low alloy steel (HSLAS) under a simulated marine environment. Special focus was given to the role of the TiN portion of the inclusion on the initiation and growth of the corrosion pits. The thermodynamic process of pitting initiation was investigated by Gibbs free energy, Pourbaix diagram and first principle calculation. Localised corrosion is mainly induced by inclusions and triggered by dissolution of adjacent distorted matrix. Chemical dissolution of CaS portion in CaS·xMgO·yAl2O3·TiN complex inclusion creates an acidic aggressive environment that accelerates the further dissolution of inclusion and matrix. Galvanic coupling effect between TiN inclusion and matrix is directly verified. TiN covered with a TiO2 film acts as the cathodic phase in galvanic corrosion, although it has a lower Volta potential than the matrix. This is an unusual correlation with the scanning Kelvin probe force microscopy result, which has been explained for this special system.

Zhang X W, Yang C F, Zhang L F.

Effects of cooling rate and isothermal holding on the characteristics of MnS particles in high-carbon heavy rail steels

[J]. Metall. Res. Technol., 2020, 117: 110

DOI      URL     [本文引用: 1]

The characteristics of MnS particles were intensively investigated at three different cooling rate of 80.4 K · s−1 (water cooling), 3.8 K · s−1 (air cooling) and 1.8 K · s−1 (furnace cooling) as well as the different isothermal holding temperature and time in laboratory experiments. The three-dimensional (3D) morphology of MnS particles was extracted from steel samples using non-aqueous solution electrolysis. The results showed that the 3D morphology of MnS changed from a nearly spherical into rod-like and the area fraction and average diameter of MnS increased with decreasing cooling rate. During isothermal holding process, the morphology of MnS changed little at 1473 K (1200 °C), but their shape profiles varied from a nearly spherical and spindle-like to irregular at higher holding temperature 1673 K (1400 °C) when the holding time exceeded 60 min. Moreover, the number density and area fraction of MnS decreased with increasing holding time at 1573 K (1300 °C) and 1673 K (1400 °C), respectively. Especially at 1573 K (1300 °C), the 1 ∼ 3 µm MnS inclusions were dissolved and lead to decreasing of number density, but that &gt; 3 µm one occurs growth and resulted in increasing of average diameter. The calculation results show that the starting temperature of precipitation of MnS was about 1627 K (1354 °C) and effect of cooling rate on the segregation of Mn and S is insignificant. Considering the segregation of solutes, MnS formation and growth takes place in the solid/liquid interface of steel when the solid fraction is close to 0.9567 during solidification. It has been found that the increase of cooling rate gives rise to the decreased of MnS diameter because the growth time of MnS is short. Furthermore, thermodynamic calculations of MnS solid solubility product were carried out to reveal the high holding temperature and long holding time favors the dissolution of MnS particles. It is necessary to decrease the sulfur content by less than 16 ppm in order to assure that the larger MnS which formed during solidification redissolves in the steel matrix, rather than relying on increasing the heating temperature which is above 1649 K (1376 °C). Subsequent, the MnS will precipitate again in a finely dispersive state during rolling process, and it can hinder annealing grain growth and finally make for the improvement of the toughness property of the steel.

Vuillemin B, Philippe X, Oltra R, et al.

SVET, AFM and AES study of pitting corrosion initiated on MnS inclusions by microinjection

[J]. Corros. Sci., 2003, 45: 1143

DOI      URL     [本文引用: 1]

Hastuty S, Nishikata A, Tsuru T.

Pitting corrosion of Type 430 stainless steel under chloride solution droplet

[J]. Corros. Sci., 2010, 52: 2035

DOI      URL     [本文引用: 1]

Hu J Z, Ren Y, Zhang J, et al.

Review on pitting corrosion of steel induced by MnS inclusions

[J]. China Metall, 2022, 32(11): 18

[本文引用: 3]

胡锦榛, 任 英, 张 继 .

MnS夹杂物诱发钢材点蚀综述

[J]. 中国冶金, 2022, 32(11): 18

[本文引用: 3]

Eklund G S.

Initiation of pitting at sulfide inclusions in stainless steel

[J]. J. Electrochem. Soc., 1974, 121: 467

DOI      URL     [本文引用: 1]

Zhang H R, Wu H Y, Wang S L, et al.

Pitting behavior of Fe-based amorphous alloy with sulfide inclusion

[J]. J. Chin. Soc. Corros. Prot., 2021, 41: 477

[本文引用: 2]

张浩然, 吴鸿燕, 王善林 .

含硫化物夹杂的铁基非晶合金点蚀规律

[J]. 中国腐蚀与防护学报, 2021, 41: 477

DOI      [本文引用: 2]

采用电化学工作站和透射电镜等对含硫化物夹杂的铁基非晶合金进行了电化学腐蚀行为及腐蚀形貌分析。结果表明,铁基非晶合金的含硫化物夹杂为Al<sub>2</sub>S<sub>3</sub>和Al<sub>57</sub>Mn<sub>12</sub>。在FeCl<sub>2</sub>溶液中表现出明显的钝化现象,腐蚀速率随溶液浓度的升高而升高;夹杂物周围贫Cr区的钝化膜薄弱,是点蚀萌生的位置;Al和Mn在FeCl<sub>2</sub>溶液中优先溶解使夹杂处形成蚀坑,在较高的浓度下蚀坑中会因自催化效应进一步腐蚀生成次生孔。

Meng Q, Frankel G S, Colijn H O, et al.

High-resolution characterization of the region around manganese sulfide inclusions in stainless steel alloys

[J]. Corrosion, 2004, 60: 346

DOI      URL     [本文引用: 1]

Schmuki P, Hildebrand H, Friedrich A, et al.

The composition of the boundary region of MnS inclusions in stainless steel and its relevance in triggering pitting corrosion

[J]. Corros. Sci., 2005, 47: 1239

DOI      URL     [本文引用: 1]

Chiba A, Muto I, Sugawara Y, et al.

A microelectrochemical system for in situ high-resolution optical microscopy: morphological characteristics of pitting at MnS inclusion in stainless steel

[J]. J. Electrochem. Soc., 2012, 159: C341

DOI      URL     [本文引用: 2]

Chiba A, Muto I, Sugawara Y, et al.

Pit initiation mechanism at MnS inclusions in stainless steel: synergistic effect of elemental sulfur and chloride ions

[J]. J. Electrochem. Soc., 2013, 160: C511

DOI      URL     [本文引用: 1]

Meng F J, Wang J Q, Han E-H, et al.

The role of TiN inclusions in stress corrosion crack initiation for Alloy 690TT in high-temperature and high-pressure water

[J]. Corros. Sci., 2010, 52: 927

DOI      URL     [本文引用: 2]

Hur D H, Han J H, Lee U C, et al.

Microchemistry of Ti-carbonitrides and their role in the early stage of pit initiation of alloy 600

[J]. Corrosion, 2006, 62: 591

DOI      URL     [本文引用: 1]

Wang Y L, Yu W, Zhu R L, et al.

Effect of complex inclusions on localized corrosion behavior in ferritic steel

[J]. Steel Res. Int., 2023, 94: 2200719

DOI      URL     [本文引用: 1]

Verma N, Pistorius P C, Fruehan R J, et al.

Transient inclusion evolution during modification of alumina inclusions by calcium in liquid steel: part I. Background, experimental techniques and analysis methods

[J]. Metall. Mater. Trans., 2011, 42B: 711

[本文引用: 1]

Kim K Y, Chung Y H, Hwang Y H, et al.

Effects of calcium modification on the electrochemical and corrosion properties of weathering steel

[J]. Corrosion, 2002, 58: 479

DOI      URL     [本文引用: 1]

Coletti B, Blanpain B, Vantilt S, et al.

Observation of calcium aluminate inclusions at interfaces between Ca-treated, Al-killed steels and slags

[J]. Metall. Mater. Trans., 2003, 34B: 533

[本文引用: 1]

Yang S F, Li J S, Wang Z F, et al.

Modification of MgO·Al2O3 spinel inclusions in Al-killed steel by Ca-treatment

[J]. Int. J. Miner. Metall. Mater., 2011, 18: 18

DOI      URL     [本文引用: 1]

Wang Y H, Zhang X, Cheng L, et al.

Correlation between active/inactive (Ca, Mg, Al)-O x -S y inclusions and localised marine corrosion of EH36 steels

[J]. J. Mater. Res. Technol., 2021, 13: 2419

DOI      URL     [本文引用: 1]

Xue H B, Cheng Y F.

Characterization of inclusions of X80 pipeline steel and its correlation with hydrogen-induced cracking

[J]. Corros. Sci., 2011, 53: 1201

DOI      URL     [本文引用: 1]

Zhu T W, Huang F, Liu J, et al.

Effects of inclusion on corrosion resistance of weathering steel in simulated industrial atmosphere

[J]. Anti-Corros. Methods Mater., 2016, 63: 490

DOI      URL     [本文引用: 3]

This paper aims to investigate the atmospheric corrosion mechanism of structural materials to develop more advanced corrosion-control technologies and cost-reduction strategies. As a second phase in steels, the non-metallic oxide inclusions are considered to not only affect the mechanical properties of steel but also the corrosion resistance of steel. So, an important research goal in this paper is to investigate the indoor accelerated corrosion kinetics of Q450NQR1 weathering steel, analyzing the galvanic polarity of different inclusions in electrochemical corrosion microcell between the inclusion and steel matrix and then elucidating the influence mechanism of inclusions on corrosion resistance of weathering steel.

Ma H C, Liu Z Y, Du C W, et al.

Stress corrosion cracking of E690 steel as a welded joint in a simulated marine atmosphere containing sulphur dioxide

[J]. Corros. Sci., 2015, 100: 627

DOI      URL     [本文引用: 1]

Yu D Y, Liu Z Y, Du C W, et al.

Research progress and prospect of stress corrosion cracking of pipeline steel in soil environments

[J]. J. Chin. Soc. Corros. Prot., 2021, 41: 737

[本文引用: 1]

余德远, 刘智勇, 杜翠薇 .

管线钢土壤应力腐蚀开裂研究进展及展望

[J]. 中国腐蚀与防护学报, 2021, 41: 737

DOI      [本文引用: 1]

综述了埋地管线钢在管道外部环境中开裂机理的研究进展,总结了材料因素 (合金元素、显微组织、夹杂物) 、环境因素 (外加电位、pH、温度、侵蚀性离子) 和应力因素 (残余应力、载荷类型、应变速率) 对管线钢SCC行为和机理的影响规律,梳理了两类典型pH SCC机理的形成过程,讨论了经典裂纹扩展速率预测模型的先进性和局限性,最后针对研究存在的不足展望了埋地管线钢SCC未来的研究方向。

Yue L J, Wang L M, Han J S.

Effects of rare earth on inclusions and corrosion resistance of 10PCuRE weathering steel

[J]. J. Rare Earths, 2010, 28: 952

DOI      URL     [本文引用: 1]

Hou Y H, Xiong G, Liu L L, et al.

Effects of LaAlO3 and La2O2S inclusions on the initialization of localized corrosion of pipeline steels in NaCl solution

[J]. Scr. Mater., 2020, 177: 151

DOI      URL     [本文引用: 1]

Huang F, Li J, Geng R M, et al.

Effect of rare earth on inclusion evolution and corrosion resistance of HRB400E steel

[J]. Mater. Corros., 2023, 74: 53

[本文引用: 1]

/