Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (2): 329-336     CSTR: 32134.14.1005.4537.2022.056      DOI: 10.11902/1005.4537.2022.056
  中国腐蚀与防护学报编委、青年编委专栏 本期目录 | 过刊浏览 |
深水压力-流速交互作用下Al-Zn-In牺牲阳极的自腐蚀行为研究
张睿1, 崔宇2, 刘莉1(), 王福会1
1.东北大学 沈阳材料科学国家研究中心东北大学联合研究分部 沈阳 110819
2.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
Effect of Synergy of Water Pressure and Flow Speed on Free-corrosion Behavior of Al-Zn-In Sacrificial Anode in Deep-sea Envioronmem
ZHANG Rui1, CUI Yu2, LIU Li1(), WANG Fuhui1
1.Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(12073 KB)   HTML
摘要: 

以海洋常用铝基牺牲阳极为对象,研究了深水压力、流速和二者同时作用下Al-Zn-In牺牲阳极的自腐蚀现象。结果表明,深水压力和流速均促进了Al-Zn-In牺牲阳极自腐蚀,但程度有所不同,流速的作用明显大于深水压力。在深水压力作用下Al-Zn-In牺牲阳极腐蚀坑的直径和深度增大,在流速作用下腐蚀坑数量明显增加,电化学反应电阻降低,另外流水对阳极基体的机械冲刷加剧了晶粒脱落,在深水压力-流速交互作用下显著促进阳极自腐蚀。

关键词 深水压力流速牺牲阳极自腐蚀    
Abstract

The effect of synergy of water pressure and water flow on the free-corrosion behavior of Al-Zn-In alloy, a common Al-based sacrificial anode material, was studied via a home-made test set for regulating water pressure and flow rate aiming to simulate the deep-sea environment. The results show that both the water pressure and water flow could promote the free-corrosion of the Al-Zn-In sacrificial alloy. The effect of the water flow is obviously greater than that of water pressure. Under high water pressure, the diameter and depth of the corrosion pits increased. By high water flow rate, the number of pits increased significantly, and the electrochemical reaction resistance decreased. In addition, the erosion effect of flowing water on the alloy substrate may enhance the falling-off process of grains from the alloy. Generally, the free-corrosion of Al-Zn-In sacrificial alloy is significantly enhanced in the presence of synergetic effect of electrochemical corrosion and water erosion.

Key wordshydrostatic pressure    flow    sacrificial anode    self-corrosion
收稿日期: 2022-03-04      32134.14.1005.4537.2022.056
ZTFLH:  TG174  
基金资助:国家自然科学基金(U20b2026)
作者简介: 张睿,男,1997年生,硕士生

引用本文:

张睿, 崔宇, 刘莉, 王福会. 深水压力-流速交互作用下Al-Zn-In牺牲阳极的自腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 329-336.
Rui ZHANG, Yu CUI, Li LIU, Fuhui WANG. Effect of Synergy of Water Pressure and Flow Speed on Free-corrosion Behavior of Al-Zn-In Sacrificial Anode in Deep-sea Envioronmem. Journal of Chinese Society for Corrosion and protection, 2023, 43(2): 329-336.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.056      或      https://www.jcscp.org/CN/Y2023/V43/I2/329

图1  实验所用Al-Zn-In牺牲阳极合金样品的金相组织及X射线衍射图谱
图2  抛光后未经蚀刻的Al-Zn-In合金样品的微观形貌及表面EDS分析结果
图3  不同环境条件下Al-Zn-In自腐蚀失重
图4  不同环境条件下Al-Zn-In牺牲阳极自腐蚀48 h的阻抗谱及其等效电路
ConditionsW / Ω·cm2Rs / Ω·cm2CPE1 / μF·cm-2n1R1 / Ω·cm2CPE2 / μF·cm-2n2R2 / Ω·cm2R0 / Ω·cm2L / H·cm2χ2 / 10-4
10 MPa, 3 m/s0.0514.882157.70.72615.77572.40.757204167.562.533.36
0.1 MPa, 3 m/s0.0586.0971870.7278.582394.20.816248.9168.7117.52.76
10 MPa, 0 m/s---6.7921100.7936.265187.50.859305.3164.31762.39
0.1 MPa, 0 m/s---8.47990.640.8085.134193.20.857335.6189.2158.52.25
表1  不同环境条件下Al-Zn-In牺牲阳极自腐蚀48 h后的EIS拟合结果
图5  Al-Zn-In牺牲阳极浸泡1 h后去除腐蚀产物宏观形貌
图6  静态条件下Al-Zn-In牺牲阳极腐蚀1 h的背散射形貌及表面EDS分析结果
图7  Al-Zn-In牺牲阳极浸泡120 h后去除腐蚀产物微观形貌
图8  不同条件下Al-Zn-In牺牲阳极腐蚀120 h后的截面背散射形貌
图9  Al-Zn-In牺牲阳极在3.5%NaCl溶液中自腐蚀溶解示意图
[1] Wang X L, Yu Q, Wang Y. Research status of deep sea materials and corrosion protection technology [J]. Total Corros. Control, 2018, 32(10): 80
[1] (王勋龙, 于青, 王燕. 深海材料及腐蚀防护技术研究现状 [J]. 全面腐蚀控制, 2018, 32(10): 80)
[2] Liu Y, Liu L, Li Y, et al. Effect of high hydrostatic pressure on diffusing behavior of water through epoxy coating [J]. J. Chin. Soc. Corros. Prot., 2012, 32: 203
[2] (刘樱, 刘莉, 李瑛 等. 高静水压力对水在环氧涂层中传输行为的影响 [J]. 中国腐蚀与防护学报, 2012, 32: 203)
[3] Zhou J L, Li X G, Cheng X Q, et al. Research progress on corrosion of metallic materials in deep sea environment [J]. Corros. Sci. Prot. Technol., 2010, 22: 47
[3] (周建龙, 李晓刚, 程学群 等. 深海环境下金属及合金材料腐蚀研究进展 [J]. 腐蚀科学与防护技术, 2010, 22: 47)
[4] Li C J, Du M. Research and development of cathodic protection for steels in deep seawater [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 10
[4] (李成杰, 杜敏. 深海钢铁材料的阴极保护技术研究及发展 [J]. 中国腐蚀与防护学报, 2013, 33: 10)
[5] Sun M X, Ma L, Zhang H B, et al. Research progress in aluminum alloy sacrificial anode materials [J]. Equip. Environ. Eng., 2018, 15(3): 9
[5] (孙明先, 马力, 张海兵 等. 铝合金牺牲阳极材料的研究进展 [J]. 装备环境工程, 2018, 15(3): 9)
[6] Zhang G Q, Qian S C, Zhang Y H, et al. Electrochemical properties of Al-Zn-In aluminum alloy sacrificial anodes [J]. Equip. Environ. Eng., 2019, 16(8): 1
[6] (张国庆, 钱思成, 张有慧 等. Al-Zn-In系铝合金牺牲阳极电化学性能研究 [J]. 装备环境工程, 2019, 16(8): 1)
[7] Zhang W Y, Wang X Y, Xi L J, et al. Research progress of sacrificial anode materials in cathodic protection technology [J]. Corros. Sci. Prot. Technol., 2013, 25: 420
[7] (张万友, 王鑫焱, 郗丽娟 等. 阴极保护技术中牺牲阳极材料的研究进展 [J]. 腐蚀科学与防护技术, 2013, 25: 420)
[8] Cao P, Zhou T T, Bai X Q, et al. Research progress on corrosion and protection in deep-sea environment [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 12
[8] (曹攀, 周婷婷, 白秀琴 等. 深海环境中的材料腐蚀与防护研究进展 [J]. 中国腐蚀与防护学报, 2015, 35: 12)
[9] Sun H J, Qin M, Li L. Performance of Al-Zn-In-Mg-Ti sacrificial anode in simulated low dissolved oxygen deep water environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 508
[9] (孙海静, 覃明, 李琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究 [J]. 中国腐蚀与防护学报, 2020, 40: 508)
[10] Hu S N, Zhang T, Shao Y W, et al. Effect of cyclic hydrostatic pressure on sacrificial anode cathodic protection [J]. J. Chin. Soc. Corros. Prot., 2012, 32: 241
[10] (胡胜楠, 张涛, 邵亚薇 等. 循环静水压力对牺牲阳极阴极保护的影响 [J]. 中国腐蚀与防护学报, 2012, 32: 241)
[11] Liu Y W, Zhang Y. Numerical analysis of flow-accelerated corrosion of a hull in the marine environment [J]. J. Harbin Eng. Univ., 2021, 42: 145
[11] (刘英伟, 张洋. 船体在海水中流动加速腐蚀数值分析 [J]. 哈尔滨工程大学学报, 2021, 42: 145)
[12] Choe S B, Lee S J. Effect of flow rate on electrochemical characteristics of marine material under seawater environment [J]. Ocean Eng., 2017, 141: 18
doi: 10.1016/j.oceaneng.2017.05.035
[13] Zhu J, Zhang Q B, Chen Y, et al. Progress of study on erosion-corrosion [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 199
[13] (朱娟, 张乔斌, 陈宇 等. 冲刷腐蚀的研究现状 [J]. 中国腐蚀与防护学报, 2014, 34: 199)
[14] Zhang Y H, Zhang L, Yi G H, et al. Influence of temperature on performance of Al-Zn-In-Mg-Ti sacrificial anode in dynamic seawater [J]. Corros. Prot., 2013, 34: 471
[14] (张有慧, 张林, 易桂虎 等. 动态海水温度对Al-Zn-In-Mg-Ti牺牲阳极性能的影响 [J]. 腐蚀与防护, 2013, 34: 471)
[15] Li H, Wei B, Xu Z B, et al. Effect of Er on microstructure and electrochemical performance of Al-Zn-In anode [J]. Rare Met. Mater. Eng., 2016, 45: 1848
[15] (李航, 魏兵, 许征兵 等. Er对Al-Zn-In合金组织和电化学性能的影响 [J]. 稀有金属材料与工程, 2016, 45: 1848)
[16] Sun H J, Liu L, Li Y, et al. The performance of Al-Zn-In-Mg-Ti sacrificial anode in simulated deep water environment [J]. Corros. Sci., 2013, 77: 77
doi: 10.1016/j.corsci.2013.07.029
[17] Ma J L, Wen J B, Zhai W X, et al. In situ corrosion analysis of Al-Zn-In-Mg-Ti-Ce sacrificial anode alloy [J]. Mater. Charact., 2012, 65: 86
doi: 10.1016/j.matchar.2012.01.003
[18] Khireche S, Boughrara D, Kadri A, et al. Corrosion mechanism of Al, Al-Zn and Al-Zn-Sn alloys in 3wt.%NaCl solution [J]. Corros. Sci., 2014, 87: 504
doi: 10.1016/j.corsci.2014.07.018
[19] Ma J L, Wen J B, Lu X W, et al. Electrochemical impedance spectroscopy of aluminum alloy anode during corrosion process [J]. Corros. Prot., 2009, 30: 373
[19] (马景灵, 文九巴, 卢现稳 等. 铝合金阳极腐蚀过程的电化学阻抗谱研究 [J]. 腐蚀与防护, 2009, 30: 373)
[20] Qi G T, Xiong W, Zhu W T. Effect of segregation on initiation of corrosion of aluminium sacrificial anode containing mischmetal [J]. Corros. Eng. Sci. Technol., 2011, 46: 458
doi: 10.1179/147842209X12476568584377
[21] Ma J L, Wen J B, Li G X, et al. The corrosion behaviour of Al-Zn-In-Mg-Ti alloy in NaCl solution [J]. Corros. Sci., 2010, 52: 534
doi: 10.1016/j.corsci.2009.10.010
[22] Xiong W, Qi G T, Guo X P, et al. Anodic dissolution of Al sacrificial anodes in NaCl solution containing Ce [J]. Corros. Sci., 2011, 53: 1298
doi: 10.1016/j.corsci.2011.01.001
[23] Pourgharibshahi M, Meratian M. Corrosion morphology of aluminium sacrificial anodes [J]. Mater. Corros., 2014, 65: 1188
[24] He J G, Wen J B, Li X D. Effects of precipitates on the electrochemical performance of Al sacrificial anode [J]. Corros. Sci., 2011, 53: 1948
doi: 10.1016/j.corsci.2011.02.016
[25] Cao C N. Principles of Electrochemistry of Corrosion [M]. 3rd ed. Beijing: Chemical Industry Press, 2008
[25] (曹楚南. 腐蚀电化学原理 [M]. 第3版. 北京: 化学工业出版社, 2008)
[1] 罗维华, 王海涛, 于林, 许实, 刘朝信, 郭宇, 王廷勇. Zn含量对Al-Zn-In-Mg牺牲阳极电化学性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1071-1078.
[2] 刘冬, 刘静, 黄峰, 杜丽影. 海洋工程结构用钢服役环境模拟及DH36钢腐蚀疲劳裂纹扩展性能研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 959-965.
[3] 陈翰林, 马力, 黄国胜, 杜敏. 溶解氧和流速对B30铜镍合金在海水中成膜的影响[J]. 中国腐蚀与防护学报, 2022, 42(5): 724-732.
[4] 高浩东, 崔宇, 刘莉, 孟凡帝, 刘叡, 郑宏鹏, 王福会. 深海压力-流速耦合环境对环氧玻璃鳞片涂层失效行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(1): 39-50.
[5] 徐桂芳, 李园, 雷玉成, 朱强. 相对流速对高氮奥氏体不锈钢在液态铅铋共晶合金中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 899-904.
[6] 葛鹏莉, 曾文广, 肖雯雯, 高多龙, 张江江, 李芳. H2S/CO2共存环境中施加应力与介质流动对碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 271-276.
[7] 孙海静, 覃明, 李琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.
[8] 赵洪涛, 陆卫中, 李京, 郑玉贵. 无溶剂环氧防腐涂层在不同流速模拟海水冲刷条件下的失效行为[J]. 中国腐蚀与防护学报, 2017, 37(4): 329-340.
[9] 赵景茂,赵起锋,姜瑞景. 咪唑啉缓蚀剂在CO2/H2S共存体系中的构效关系研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 142-147.
[10] 马景灵,任凤章,王广欣,熊毅,文九巴. Al-Mg-Sn-Ga铝阳极合金电化学性能研究[J]. 中国腐蚀与防护学报, 2016, 36(5): 421-426.
[11] 刘栓, 赵霞, 陈长伟, 侯保荣, 陈建敏. 油田输油管线钢X65的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2015, 35(5): 393-399.
[12] 赵桐, 赵景茂, 姜瑞景. 流速和碳链长度对咪唑啉衍生物在高压CO2环境中缓蚀性能的影响[J]. 中国腐蚀与防护学报, 2015, 35(2): 163-168.
[13] 赵国强, 魏英华, 李京. Al-Zn-In牺牲阳极在不同工作电流密度下电流效率及溶解机制的研究[J]. 中国腐蚀与防护学报, 2015, 35(1): 69-74.
[14] 范丰钦, 宋积文, 李成杰, 杜敏. 海水流速对DH36平台钢阴极保护的影响[J]. 中国腐蚀与防护学报, 2014, 34(6): 550-557.
[15] 胡胜楠,张涛,邵亚薇,孟国哲,王福会. 循环静水压力对牺牲阳极阴极保护的影响[J]. 中国腐蚀与防护学报, 2012, 32(3): 241-246.