Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (1): 202-208     CSTR: 32134.14.1005.4537.2021.357      DOI: 10.11902/1005.4537.2021.357
  研究报告 本期目录 | 过刊浏览 |
锅炉电极材料交流腐蚀特性与选型研究
郑重1, 周远翔1,2(), 李永印1
1.新疆大学电气工程学院 电力系统及大型发电设备安全控制和仿真国家重点实验室风光储分室 乌鲁木齐 830047
2.清华大学电机系 电力系统及大型发电设备安全控制和仿真国家重点实验室 北京 100084
AC Corrosion Behavior of Several Metallic Materials as Candidate for Boiler Electrode
ZHENG Zhong1, ZHOU Yuanxiang1,2(), LI Yongyin1
1.Wind Solar Storage Division of State Key Laboratory of Power System and Generation Equipment, School of Electrical Engineering, Xinjiang University, Urumqi 830047, China
2.State Key Laboratory of Control and Simulation of Power Systems and Generation Equipment, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(7089 KB)   HTML
摘要: 

通过控制电流密度模拟电极锅炉的工况,开展TA2钛合金、304不锈钢和20#钢 3种电极材料耐腐蚀实验和电化学实验,测量得到3种电极材料在不同浓度磷酸三钠溶液和不同电压下腐蚀前后电极腐蚀速率、极化电位和导电性等变化规律。结果表明,20#钢的腐蚀电流密度约为304不锈钢的4倍,钛电极的20倍。20#钢电极表面生成疏松的腐蚀产物,耐蚀性最差;钛电极的耐蚀性最好,但价格高;304不锈钢在500 A/m2的交流干扰下不能完整钝化,表面发生点蚀,但综合考虑耐腐蚀性、导电能力和经济性原则,在锅炉预期寿命较长的情况下,应选用不锈钢作为电极材料。

关键词 电极锅炉交流腐蚀高压电极磷酸三钠溶液产物膜    
Abstract

Corrosion resistance of electrode materials is an important factor affecting energy consumption and service life of electrode boiler. In this paper, the corrosion resistance of titanium, 304 stainless steel and 20# steel as candidate electrode materials was assessed by controlling the applied current density to simulate the working condition of electrode boiler. The corrosion rate, polarization potential and conductivity of the three electrode materials were measured before and after corrosion in different concentrations of trisodium phosphate solution by different applied voltages. The results show that the corrosion current density of 20# steel is about 4 and 20 times higher than that of 304 stainless steel and titanium respectively. Loose corrosion products are generated on the surface of 20# steel electrode, and thus its corrosion resistance is the worst. Results of comparative tests show that titanium electrode has the best corrosion resistance, but its price is high; 304 stainless steel cannot completely be passivated by 500 A/m2 AC interference, thereby pitting corrosion occurs on its surface. By taking comprehensively the corrosion resistance, conductivity and economy into consideration, stainless steel may be the suitable candidate as electrode material in the case of long boiler life expectancy.

Key wordselectrode boiler    AC corrosion    high voltage electrode    trisodium phosphate solution    passive film
收稿日期: 2021-12-16      32134.14.1005.4537.2021.357
ZTFLH:  TG174  
作者简介: 郑重,男,1996年生,硕士生

引用本文:

郑重, 周远翔, 李永印. 锅炉电极材料交流腐蚀特性与选型研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 202-208.
Zhong ZHENG, Yuanxiang ZHOU, Yongyin LI. AC Corrosion Behavior of Several Metallic Materials as Candidate for Boiler Electrode. Journal of Chinese Society for Corrosion and protection, 2023, 43(1): 202-208.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.357      或      https://www.jcscp.org/CN/Y2023/V43/I1/202

图1  电极腐蚀系统
图2  电化学测试装置
图3  腐蚀后的电极
图4  除锈后的20#钢电极
图5  3种电极材料不同腐蚀时长电极的腐蚀速率
图6  100 ℃,0.003 mol/L磷酸三钠溶液下各电极电流值
图7  3种电极材料腐蚀360 h电极温度电流及拟合
图8  3种电极材料在不同电压、浓度下电极腐蚀速率
图9  3种电极材料在不同材料电极SEM图像
图10  3种电极材料在500 A/m2交流干扰下的电极电位
图11  3种电极材料在500 A/m2交流干扰下的极化曲线
ElectrodeEcorr / Vba / V·dec-1bc / V·dec-1Icorr / A·cm-2
Titanium7.5390.12573-0.12032.1×10-5
304 stainless steel-0.1050.15521-0.339221.1×10-4
20# steel-0.4350.19437-0.338734.2×10-4
表1  3种电极材料的极化曲线拟合数据
1 Kang C Q, Chen H, Zhao Y M, et al. High performance distributed electro-thermic energy system centered on the high voltage electrode electric boiler [J]. Southern Power Syst. Technol., 2017, 11(10): 35
1 康重庆, 陈辉, 赵宇明 等. 以高压电极式电锅炉为核心的高性能分布式电热能源系统 [J]. 南方电网技术, 2017, 11(10): 35
2 Guo F, Xia Q Y, Liu Y. Theory and application of immersion-type electrode boiler [J]. Energy Res. Manag., 2012, (2): 65
2 郭锋, 夏青扬, 刘杨. 浸没式电极锅炉原理及应用 [J]. 能源研究与管理, 2012, (2): 65
3 Chen W B, Dai G P, Chen C, et al. Review on the development of high voltage electrode boiler technology [J]. Technol. Econom. Guide, 2019, (3): 65
3 陈卫波, 戴刚平, 陈超 等. 高压电极锅炉技术研究发展综述 [J]. 科技经济导刊, 2019, (3): 65
4 Wu B C, Wu H Y. Research on the method of steam-water reverse power control of immerged electrode boiler for nuclear power plants [J]. Electr. Power, 2017, 50(2): 107
4 吴炳晨, 吴航宇. 核电电极浸入式锅炉汽水参数反向控制电功率方法 [J]. 中国电力, 2017, 50(2): 107
5 Yuan X F. Study on mechanism modeling and dynamic characteristics of submerged electrode boiler system [D]. Baoding: North China Electric Power University, 2019
5 袁雪峰. 电极浸入式锅炉系统机理建模及动态特性研究 [D]. 保定: 华北电力大学, 2019
6 Yuan X F, Ma J, Qiang S. Study on decoupling of power and steam temperature control system of electrode boiler [J]. Comput. Simulat., 2019, 36(9): 136
6 袁雪峰, 马进, 强硕. 电极式锅炉功率与蒸汽温度控制系统解耦研究 [J]. 计算机仿真, 2019, 36(9): 136
7 Ma J, Qiang S, Yuan X F. Research on mathematical modeling of electrode boiler based on dynamic neural network [J]. Comput. Simulat., 2019, 36(9): 126
7 马进, 强硕, 袁雪峰. 基于动态神经网络的电极式锅炉数学建模研究 [J]. 计算机仿真, 2019, 36(9): 126
8 Liu Y F. A kind of low voltage unscaled carbon fiber electrode boiler [P]. Chin Pat, 202023228499.1, 2021
8 刘永锋. 一种低压无垢碳纤维电极锅炉 [P]. 中国专利, 202023228499.1, 2021)
9 Zhang J, Geng H L. Long life electrode boiler electrode rod and its preparation method [P]. Chin Pat, 202010162746.8, 2020
9 张杰, 耿华龙. 长寿命电极锅炉电极棒及其制备方法 [P]. 中国专利, 202010162746.8, 2020)
10 Guo Y S, Zhao D G. Electrode rod for electrode boiler [P]. Chin Pat, 201921114576.5, 2020
10 郭永生, 赵殿国. 电极锅炉用电极棒 [P]. 中国专利, 20192111-4576.5, 2020)
11 Zhan W X, Xie L, Wang Y, et al. Rod electrode device for electrode boiler [P]. Chin Pat, 2020204052580, 2020
11 战卫星, 谢玲, 王勇 等. 电极锅炉用棒式电极装置 [P]. 中国专利, 2020204052580, 2020)
12 Zhan W X, Liu D Q, Cao J, et al. Parallel plate electrode device for electrode boiler [P]. Chin Pat, 202020405281.X, 2020
12 战卫星, 刘德强, 曹洁 等. 电极锅炉用平行板式电极装置 [P]. 中国专利, 202020405281.X, 2020)
13 Wang Y, Zhan W X, Fu J S. Symmetrical plate electrode device for electrode boiler [P]. Chin Pat, 202020404645.2, 2020
13 王勇, 战卫星, 傅吉收. 电极锅炉用对称板式电极装置 [P]. 中国专利, 202020404645.2, 2020)
14 Chen W B, Chen Z G, Zhang D C, et al. Experimental study on durability of electrode materials for high voltage electrode boilers [J]. Shandong Ind. Technol., 2019, (4): 6
14 陈卫波, 陈志高, 张大长 等. 高压电极锅炉电极材料耐久性试验研究 [J]. 山东工业技术, 2019, (4): 6
15 Wan H X, Song D D, Liu Z Y, et al. Effect of alternating current on corrosion behavior of X80 pipeline steel in near-neutral environment [J]. Acta Metall. Sin., 2017, 53: 575
15 万红霞, 宋东东, 刘智勇 等. 交流电对X80钢在近中性环境中腐蚀行为的影响 [J]. 金属学报, 2017, 53: 575
16 Zhu M, Du C W, Li X G, et al. Effects of alternating current (AC) frequency on corrosion behavior of X80 pipeline steel in a simulated acid soil solution [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 225
16 朱敏, 杜翠薇, 李晓刚 等. 交流电频率对X80管线钢在酸性土壤模拟溶液中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2014, 34: 225
17 Wang X H, Yang G Y, Huang H, et al. AC stray current corrosion law of buried steel pipeline [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 293
17 王新华, 杨国勇, 黄海 等. 埋地钢质管道交流杂散电流腐蚀规律研究 [J]. 中国腐蚀与防护学报, 2013, 33: 293
18 Zhu M, Liu Z Y, Du C W, et al. Effects of alternating current on corrosion behavior of X80 pipeline steel in acid soil environment [J]. J. Mater. Eng., 2015, 43(2): 85
18 朱敏, 刘智勇, 杜翠薇 等. 交流电对X80钢在酸性土壤环境中腐蚀行为的影响 [J]. 材料工程, 2015, 43(2): 85
19 Zhang Y X, Du Y X, Lu M X. Corrosion behavior of buried pipeline under dynamic DC stray current interference [J]. Corros. Prot., 2013, 34: 771
19 张玉星, 杜艳霞, 路民旭. 动态直流杂散电流干扰下埋地管道的腐蚀行为 [J]. 腐蚀与防护, 2013, 34: 771
20 Liang Y, Du Y X. Research progress on evaluation criteria and mechanism of corrosion under cathodic protection and AC interference [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 215
20 梁毅, 杜艳霞. 交流干扰和阴极保护协同作用下的腐蚀评判标准与机理研究进展 [J]. 中国腐蚀与防护学报, 2020, 40: 215
21 Liu C P, Cui Z Y. Electrode boiler for improving electrode corrosion and electrode boiler system including electrode boiler [P]. Korea Pat: 201921740602.5, 2020
21 柳成培, 崔宰源. 改善电极腐蚀的电极锅炉及包括电极锅炉的电极锅炉系统 [P]. 韩国专利: 201921740602.5, 2020)
22 Jin G Y. Surface area expansion electrode rod for electrode boiler and its manufacturing method [P]. Korea Pat: 202010935493.3, 2021
22 金庚昱. 用于电极锅炉的表面积扩张型电极棒及其制造方法 [P]. 韩国专利: 202010935493.3, 2021)
[1] 王晓, 李明, 刘峰, 王忠平, 李相波, 李宁旺. 温度对B10铜镍合金管冲刷腐蚀行为影响规律研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1329-1338.
[2] 幸雪松, 范白涛, 朱新宇, 张俊莹, 陈长风. 低H2S和高CO2分压下超深井用P110SS油套管钢腐蚀特征研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 611-618.
[3] 王晓, 刘峰, 李焰, 张威, 李相波. 静态和动态海水中B10铜镍合金管的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 119-126.
[4] 王小红, 李子硕, 唐御峰, 谭浩, 蒋焰罡. CO2-H2S-Cl-共存的地层水环境中Cr含量对钢的腐蚀产物膜特性的影响[J]. 中国腐蚀与防护学报, 2022, 42(6): 1043-1050.
[5] 王通, 孟惠民, 葛鹏飞, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. 2Cr-1Ni-1.2Mo-0.2V钢在NH4H2PO4溶液中的电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 551-562.
[6] 邓佳丽, 闫茂成, 高博文, 张辉. 高铁动态交流干扰下管道钢的腐蚀行为试验研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 127-134.
[7] 王家明, 杨昊东, 杜敏, 彭文山, 陈翰林, 郭为民, 蔺存国. B10铜镍合金在高浓度NH4+污染海水中腐蚀研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 609-616.
[8] 白海涛, 杨敏, 董小卫, 马云, 王瑞. CO2腐蚀产物膜的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[9] 梁毅, 杜艳霞. 交流干扰和阴极保护协同作用下的腐蚀评判标准与机理研究进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[10] 郏义征, 赵明君, 程世婧, 王保杰, 王硕, 盛立远, 许道奎. 模拟人体体液中镁合金的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 463-468.
[11] 黄博博,刘平,刘新宽,梅品修,陈小红. 新型HSn70-1铜网衣两年期海水腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.
[12] 鲍明昱, 任呈强, 胡静思, 刘博, 李佳蒙, 王丰, 刘丽, 郭小阳. 油气管材应力诱导腐蚀电化学行为探讨[J]. 中国腐蚀与防护学报, 2017, 37(6): 504-512.
[13] 张弟,梁平,张云霞,史艳华,秦华. 库尔勒土壤模拟溶液中形成的腐蚀产物膜对X80钢点蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(4): 313-320.
[14] 董洋洋, 黄峰, 程攀, 胡骞, 刘静. X65 MS耐酸管线钢在H2S环境中腐蚀产物膜的演变[J]. 中国腐蚀与防护学报, 2015, 35(5): 386-392.
[15] 梁平, 王莹. 覆有短期腐蚀产物膜的X80钢的电化学行为[J]. 中国腐蚀与防护学报, 2013, 33(5): 371-376.