Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (6): 894-902          DOI: 10.11902/1005.4537.2021.353
  研究报告 本期目录 | 过刊浏览 |
低合金钢在模拟海洋低温环境下的电偶腐蚀研究
王育鑫1, 吴波1(), 戴乐阳1, 胡科峰2, 吴建华1, 杨阳1, 闫福磊1, 张贤慧1
1.集美大学 厦门市海洋腐蚀与智能防护材料重点实验室 厦门 361021
2.武汉第二船舶设计研究所 武汉 430064
Galvanic Corrosion Behavior for Coupling of Three Low Alloy Steels in Artificial Seawater at Low Temperatures
WANG Yuxin1, WU Bo1(), DAI Leyang1, HU Kefeng2, WU Jianhua1, YANG Yang1, YAN Fulei1, ZHANG Xianhui1
1. Xiamen Key Laboratory of Marine Corrosion and Intelligent Protection Materials, Jimei University, Xiamen 361021, China
2. Wuhan Second Ship Design Institute, Wuhan 430064, China
引用本文:

王育鑫, 吴波, 戴乐阳, 胡科峰, 吴建华, 杨阳, 闫福磊, 张贤慧. 低合金钢在模拟海洋低温环境下的电偶腐蚀研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 894-902.
Yuxin WANG, Bo WU, Leyang DAI, Kefeng HU, Jianhua WU, Yang YANG, Fulei YAN, Xianhui ZHANG. Galvanic Corrosion Behavior for Coupling of Three Low Alloy Steels in Artificial Seawater at Low Temperatures[J]. Journal of Chinese Society for Corrosion and protection, 2022, 42(6): 894-902.

全文: PDF(9128 KB)   HTML
摘要: 

为研究低温环境下 (0~20 ℃),温度的变化对低电位差耦合体系电偶腐蚀效应的影响,采用电化学方法、失重法和形貌观测法研究了907A钢、921A钢和980钢构成的低电位差三金属耦合体系在不同温度的海洋环境下的电偶腐蚀行为。结果表明:在不同温度的环境下,907A钢作为三金属偶对体系的阳极,921A钢、980钢为阴极,随着温度的上升,907A钢的电偶腐蚀系数增大。此外,低电位差的电偶对 (<60 mV) 之间也存在严重的电偶腐蚀,电偶效应加速了作为阳极金属907A钢的小孔腐蚀,增加了海洋装备的失效风险。在低电位差的多金属耦接件的使用过程中须进行涂层与阴极保护完全防护。

关键词 海洋环境低温低合金高强钢电偶腐蚀    
Abstract

The galvanic corrosion behavior of a coupling of 907A steel, 921A steel and 980 steel, in artificial seawater at different temperatures within the range of 0-20 ℃ was assessed by electrochemical method, mass loss method and morphology observation techniques. The results showed that at different temperatures, 907A steel acted as anode in the coupling, while 921A steel and 980 steel acted as cathode. The galvanic corrosion coefficient of 907A steel increased with the increasing temperature. Besides, galvanic corrosion may emerge to certain extent, for galvanic pairs of metals with close open circuit potential (<60 mV). The galvanic corrosion effect changed the uniform corrosion of 907A steel into local pitting corrosion, which might increase the failure risk of marine facility. For the control of such corrosion, the combination of protective coating and cathodic protection may be a better option.

Key wordsmarine environment    low temperature    low alloy high strength steel    galvanic corrosion
收稿日期: 2021-12-08     
ZTFLH:  TG172  
基金资助:国家重点研发计划(2020YFE0100100)
作者简介: 王育鑫,男,1996年生,硕士生
Steel componentCSiMnSPNiCrCuVMoFe
907A≤0.1200.80-1.100.50-0.80≤0.015≤0.02000.50-0.800.60-0.900.40-0.6000Bal.
921A0.07-0.140.17-0.370.30-0.60≤0.015≤0.0202.60-3.000.90-1.2000.04-0.100.20-0.27Bal.
980≤0.110.17-0.370.40-0.70≤0.010≤0.0154.40-4.800.40-0.7000.03-0.090.30-0.55Bal.
表1  3种低合金高强钢的化学成分
图1  工作电极位置俯视图及电化学测量电解池
图2  3种低合金钢在模拟人工海水中的极化曲线
SteelEcorr / VIcorr / μA·cm-2Corrosion rate / mm·a-1
907A-0.71205.5720.0511
921A-0.70545.4670.0499
980-0.69535.3780.0487
表2  3种低合金钢的极化曲线拟合结果
图3  3种低合金钢的开路电位与腐蚀电流密度随温度变化曲线
图4  三金属电偶对在0 ℃下的电偶电位与电偶电流曲线
图5  三金属电偶对的电偶电位与电偶电流随温度变化曲线
图6  3种低合金钢在耦接前后的电化学阻抗谱图
图7  等效电路图
Temperature / ℃ElectrodeRs / Ω·cm2QdL / μΩ-1·S n ·cm-2n1Rct / Ω·cm2Qoxide / μΩ-1·S n ·cm-2n2Roxide / Ω·cm2
0907A18.21683.30.87577545.30.816653
921A19.89667.80.86796133.30.834793
98019.87661.50.87898931.50.844813
Coupled 907A19.32854.20.85631552.10.838237
Coupled 921A20.23192.30.782173224.70.836638
Coupled 98020.87187.30.771221323.60.817898
10907A13.86723.50.86457776.30.695694
921A13.75695.40.84579564.50.819538
98015.21690.50.83183461.60.846684
Coupled 907A14.84877.20.88529886.70.889219
Coupled 921A14.87198.50.796152751.50.877634
Coupled 98015.21193.50.866195253.40.815685
20907A9.77813.50.84134481.40.875487
921A10.17731.40.86163169.80.811454
98010.27711.50.82272770.40.829511
Coupled 907A9.98892.40.81929089.10.837212
Coupled 921A9.52224.30.799132461.70.861598
Coupled 9809.86213.60.806150360.80.884618
表3  不同温度下电化学阻抗谱拟合结果
图8  907A钢耦合前后Rct与Roxide随温度变化图
图9  3种低合金钢在不同温度下耦接前后腐蚀失重图
图10  KC与PC随温度变化曲线
图11  921A钢与980钢保护度随温度变化图
图12  3种低合金钢在10 ℃人工海水浸泡7 d后去除腐蚀产物后表面SEM形貌
图13  907A钢表面点蚀坑深度测量图
[1] Shen J, Ding X X, Song K Q, et al. Research progress on corrosion and protection of equipment materials in marine atmosphere [J]. Equip. Environ. Eng., 2020, 17(10): 103
[1] (沈剑, 丁星星, 宋凯强 等. 海洋大气环境下装备材料的腐蚀与防护研究进展 [J]. 装备环境工程, 2020, 17(10): 103)
[2] Ding G Q, Yang Z H, Huang G Q, et al. Corrosion potentials and their change rules for ferrous metals in natural seawater [J]. Corros. Prot., 2018, 39: 99
[2] (丁国清, 杨朝晖, 黄桂桥 等. 黑色金属在天然海水中的腐蚀电位及其变化规律 [J]. 腐蚀与防护, 2018, 39: 99)
[3] Mei W, Wang Z H, Zhang X, et al. Research progress of galvanic corrosion and protection technology of metal materials [J]. Hot Work. Technol., 2022, 51(4): 15
[3] (梅婉, 王泽华, 张欣 等. 金属材料的电偶腐蚀及其防护技术研究进展 [J]. 热加工工艺, 2022, 51(4): 15)
[4] Hu S B, Liu R, Liu L, et al. Effect of hydrostatic pressure on the galvanic corrosion of 90/10 Cu-Ni alloy coupled to Ti6Al4V alloy [J]. Corros. Sci., 2020, 163: 108242
doi: 10.1016/j.corsci.2019.108242
[5] Xing P, Lu L, Li X G. Oxygen-concentration cell induced corrosion of E690 steel for ocean platform [J]. Chin. J. Mater. Res., 2016, 30: 241
[5] (邢佩, 卢琳, 李晓刚. 海洋用高强钢E690氧浓差腐蚀行为研究 [J]. 材料研究学报, 2016, 30: 241)
doi: 10.11901/1005.3093.2015.507
[6] Niu X L, Chen C P. Research progress of corrosion protection of steel structure in marine engineering [J]. Ship Eng., 2019, 41(4): 100
[6] (牛雪莲, 陈昌平. 海洋工程钢结构腐蚀防护的研究进展 [J]. 船舶工程, 2019, 41(4): 100)
[7] Wu X W, Huang L Q, Sun Q. Study on galvanic corrosion characteristics of metallic materials used in surface ships [J]. Mater. Prot., 2021, 54(4): 36
[7] (武兴伟, 黄璐琼, 孙启. 舰船用金属材料的电偶腐蚀特性研究 [J]. 材料保护, 2021, 54(4): 36)
[8] Zhang T Y, He Y T, Zhang T, et al. Research status and development direction of galvanic corrosion and protection technology for heterogeneous structural materials [J]. Equip. Environ. Eng., 2020, 17(5): 40
[8] (张天宇, 何宇廷, 张腾 等. 异种结构材料电偶腐蚀及防护技术的研究现状及发展方向 [J]. 装备环境工程, 2020, 17(5): 40)
[9] Fan W J, Zhang Y, Tian H W, et al. Corrosion behavior of two low alloy steel in simulative deep-sea environment coupling to titanium alloy [J]. Colloid Interface Sci. Commun., 2019, 29: 40
doi: 10.1016/j.colcom.2019.01.003
[10] Zhang X M, Chen Z Y, Luo H F, et al. Corrosion resistances of metallic materials in environments containing chloride ions: a review [J]. Trans. Nonferrous Met. Soc. China, 2022, 32: 377
doi: 10.1016/S1003-6326(22)65802-3
[10] (张先满, 陈再雨, 罗洪峰 等. 金属材料在含氯化物水基环境中的耐腐蚀性能 [J]. 中国有色金属学报, 2022, 32: 377)
[11] Chen Y F, Li Z X, Liu L T, et al. Galvanic corrosion behavior of T2/TC4 galvanic couple in static artificial seawater [J]. Rare Met. Mater. Eng., 2019, 48: 1161
[11] (陈云飞, 李争显, 刘林涛 等. T2/TC4在静态人造海水中的电偶腐蚀行为 [J]. 稀有金属材料与工程, 2019, 48: 1161)
[12] Du X Q, Yang Q S, Chen Y, et al. Galvanic corrosion behavior of copper/titanium galvanic couple in artificial seawater [J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 570
doi: 10.1016/S1003-6326(14)63097-1
[12] (杜小青, 杨青松, 陈宇 等. Cu/Ti在模拟海水中的电偶腐蚀行为 [J]. 中国有色金属学报, 2014, 24: 570)
[13] Lei B, Hu S N, Lu Y F, et al. Galvanic corrosion behavior and electric insulation between B10 and a high strength steel in seawater environment for warship [J]. Corros. Prot., 2019, 40: 497
[13] (雷冰, 胡胜楠, 卢云飞 等. 海水环境中B10合金与高强钢的电偶腐蚀行为与电绝缘防护技术 [J]. 腐蚀与防护, 2019, 40: 497)
[14] Xu Q, Liu Y P, Hu P F, et al. Analysis of galvanic corrosion behavior of stainless steel and hull steel in seawater [J]. Equip. Environ. Eng. 2022, 19(05): 126
[14] (徐强, 刘亚鹏, 胡鹏飞 等. 不锈钢与船体钢在海水中的电偶腐蚀行为研究 [J]. 装备环境工程. 2022, 19(05): 126)
[15] Liang M H, Wu X Q, Xie F Q, et al. Effect of Cl- concentration on corrosion behavior of anodized 5A06 alloy/aluminum1Cr18Ni9Ti stainless steel coupling [J]. Surf. Technol. (2022-05-14).
[15] (梁明辉, 吴向清, 谢发勤 等. Cl-浓度对阳极氧化5A06铝合金/1Cr18Ni9Ti不锈钢偶接件的腐蚀行为影响 [J]. 表面技术. (2022-05-14). )
[16] Zhao P P, Song Y W, Dong K H, et al. Study on the galvanic corrosion of Ti-Al coupling and control measurements [J]. Chin. J. Nonferrous Met. (2022-05-14).
[16] (赵平平, 宋影伟, 董凯辉 等. 钛-铝连接时的电偶腐蚀及控制措施研究 [J]. 中国有色金属学报. (2022-05-14). )
[17] Chen Y L, Huang H L, Bian G X, et al. Test and simulation of effects of multi-electrode coupling on atmospheric corrosion of metals [J]. Acta Aeronaut. Astronaut. Sin., 2018, 39(6): 205
[17] (陈跃良, 黄海亮, 卞贵学 等. 多电极偶接对金属大气腐蚀影响的试验与仿真 [J]. 航空学报, 2018, 39(6): 205)
[18] Tian Y Q, Chang W, Hu L H, et al. Risk of galvanic corrosion among API X65, 316L and inconel 625 [J]. Surf. Technol., 2016, 45(5): 128
[18] (田永芹, 常炜, 胡丽华 等. APIX65、316L不锈钢及Inconel 625间电偶腐蚀风险研究 [J]. 表面技术, 2016, 45(5): 128)
[19] Zhang W Y. Progress in research on galvanic corrosion behavior and protection [J]. Total Corros. Control, 2018, 32(12): 51
[19] (张文毓. 电偶腐蚀与防护的研究进展 [J]. 全面腐蚀控制, 2018, 32(12): 51)
[20] Chen Y L, Wang A D, Bian G X, et al. Simulation of galvanic corrosion of three electrodes in marine environment [J]. J. Beijing Univ. Aeronaut. Astronaut., 2018, 44: 1808
[20] (陈跃良, 王安东, 卞贵学 等. 海洋环境下三电极的电偶腐蚀仿真 [J]. 北京航空航天大学学报, 2018, 44: 1808)
[21] Du M, Guo Q K, Zhou C J. Galvanic corrosion of carbon steel/titanium and carbon steel/titanium/navel brass in seawater [J]. J. Chin. Soc. Corros. Prot., 2006, 26: 263
[21] (杜敏, 郭庆锟, 周传静. 碳钢/Ti和碳钢/Ti/海军黄铜在海水中电偶腐蚀的研究 [J]. 中国腐蚀与防护学报, 2006, 26: 263)
[22] Shi L J, Yang X Y, Song Y W, et al. Effect of corrosive media on galvanic corrosion of complicated tri-metallic couples of 2024 Al alloy/Q235 mild steel/304 stainless steel [J]. J. Mater. Sci. Technol., 2019, 35: 1886
doi: 10.1016/j.jmst.2019.04.022
[23] Zhang X M, Guo W M, Zhang H X, et al. Galvanic corrosion behavior of copper alloys in simulated deep-sea low temperature environment [J]. Corros. Prot., 2015, 36: 1161
[23] (张晓梅, 郭为民, 张慧霞 等. 模拟深海低温环境中铜合金的电偶腐蚀行为 [J]. 腐蚀与防护, 2015, 36: 1161)
[24] Li S Y, Chen W. Galvanic coupling behavior on carbon steel/red copper in NaCl media [J]. Corros. Sci. Prot. Technol., 2000, 12: 300
[24] (李淑英, 陈玮. 碳钢/紫铜在NaCl介质中的电偶行为 [J]. 腐蚀科学与防护技术, 2000, 12: 300)
[25] Shao Z F. Galvanic corrosion between different hull steels [J]. Dev. Appl. Mater, 1987, (6): 37
[25] (邵壮藩. 不同船体钢之间的电偶腐蚀 [J]. 材料开发与应用, 1987, (6): 37)
[26] Zhang Y, Dai M A. Galvanic corrosion of ship-building steel couple with low potentialdifference in seawater [J]. J. Chin. Soc. Corros. Prot., 1993, 13: 86
[26] (张英, 戴明安. 海水中舰船钢低电位差电偶的腐蚀 [J]. 中国腐蚀与防护学报, 1993, 13: 86)
[27] Akid R, Mills D J. A comparison between conventional macroscopic and novel microscopic scanning electrochemical methods to evaluate galvanic corrosion [J]. Corros. Sci., 2001, 43: 1203
doi: 10.1016/S0010-938X(00)00091-3
[28] Wang C L. Corrosion behavior of galvanic corrosion in multi-material system in marine environment [D]. Harbin: Harbin Engineering University, 2013
[28] (王春丽. 海洋环境复杂偶合体系腐蚀行为研究 [D]. 哈尔滨: 哈尔滨工程大学, 2013)
[29] Okonkwo B O, Ming H L, Meng F J, et al. Galvanic corrosion study between low alloy steel A508 and 309/308 L stainless steel dissimilar metals: a case study of the effects of oxide film and exposure time [J]. J. Nucl. Mater., 2021, 548: 152853
doi: 10.1016/j.jnucmat.2021.152853
[30] Zhao Q Y, Wang H Y, Guo C, et al. Galvanic corrosion of low-hydrogen-embrittlement Cd-Ti 300M steel coupled with composite-coated TC4 titanium alloy in an industrial-marine atmospheric environment [J]. J. Mater. Eng. Perform., 2021, 30: 3872
doi: 10.1007/s11665-021-05698-0
[31] Ma Y T, Lei B, Li Y, et al. Pitting corrosion rate of super 13Cr tubing in simulated acid fracturing environment [J]. Corros. Sci. Prot. Technol., 2013, 25: 347
[31] (马元泰, 雷冰, 李瑛 等. 模拟酸化压裂环境下超级13Cr油管的点蚀速率 [J]. 腐蚀科学与防护技术, 2013, 25: 347)
[1] 刘国强, 张东方, 陈昊翔, 范志宏, 熊建波, 吴清发. 2304双相不锈钢钢筋在混凝土孔隙模拟液中的电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 204-212.
[2] 孙硕, 代珈铭, 宋影伟, 艾彩娇. 挤压态EW75稀土镁合金在沈阳工业大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 141-150.
[3] 廖敏行, 刘俊, 董宝军, 冷雪松, 蔡泽伦, 武俊伟, 贺建超. 盐雾环境对1Cr18Ni9Ti钎焊接头的影响研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1312-1318.
[4] 邢少华, 刘仲晔, 刘近增, 白舒宇, 钱峣, 张大磊. ZCuSn5Pb5Zn5/B10偶对在流动海水中的腐蚀规律与机制研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1339-1348.
[5] 张勤号, 朱泽洁, 蔡浩冉, 李鑫冉, 孟宪泽, 李昊, 伍廉奎, 罗荘竹, 曹发和. Pt/IrO x -pH超微电化学传感器性能探究及其在铜/不锈钢电偶腐蚀研究中的应用[J]. 中国腐蚀与防护学报, 2023, 43(6): 1264-1272.
[6] 倪雨朦, 于英杰, 严慧, 王嵬, 李瑛. 铜铝/镍石墨可磨耗封严涂层相选择性溶解机制有限元研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 855-861.
[7] 王长罡, DANIEL Enobong Felix, 李超, 董俊华, 杨华, 张东玖. 海洋环境中碳钢和不锈钢螺栓紧固件的腐蚀机制差异研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 737-745.
[8] 宋健, 周文晖, 王金龙, 孙文瑶, 陈明辉, 王福会. 不同Y2O3含量的YSZ块体材料在模拟海洋环境下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 359-364.
[9] 邢少华, 刘近增, 白舒宇, 钱峣, 张大磊, 马力. 海水流速对B10/B30电偶腐蚀行为影响规律研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 391-398.
[10] 孙士斌, 赵子铭, 高珍鹏, 宫旭辉, 王东胜, 强强, 常雪婷. 317L/FH40复合板在不同温度下摩擦-腐蚀耦合作用机理研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 69-76.
[11] 刘近增, 邢少华, 钱峣, 张大磊, 马力. 20#钢/锡青铜偶对在流动海水中的电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 127-134.
[12] 刘泽琪, 何潇潇, 祁康, 黄华良. AZ91D镁合金和2002铝合金在0.5 mg/L NaCl溶液中的电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 1016-1026.
[13] 梅佳雪, 杜尊峰, 朱海涛. 基于随机腐蚀的船舶结构极限承载力研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 662-668.
[14] 滕琳, 陈旭. 海洋环境中金属电偶腐蚀研究进展[J]. 中国腐蚀与防护学报, 2022, 42(4): 531-539.
[15] 陈志坚, 周学杰, 陈昊. 高速列车铆接件中6A01铝合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 507-512.