Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (6): 903-912          DOI: 10.11902/1005.4537.2021.296
  研究报告 本期目录 | 过刊浏览 |
Q235钢表面的超疏水吸附层形成与缓蚀研究
罗为平1, 罗雪1, 石悦婷1, 王新潮1,2, 张胜涛1, 高放1(), 李红茹1
1.重庆大学化学化工学院 重庆 401331
2.菏泽学院药学院 菏泽 274015
Preparation and Corrosion Inhibition of Super Hydrophobic Adsorption Film of Lotus Leaf Extract on Mild Steel
LUO Weiping1, LUO Xue1, SHI Yueting1, WANG Xinchao1,2, ZHANG Shengtao1, GAO Fang1(), LI Hongru1
1. College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
2. College of Pharmacy, Heze University, Heze 274015, China
引用本文:

罗为平, 罗雪, 石悦婷, 王新潮, 张胜涛, 高放, 李红茹. Q235钢表面的超疏水吸附层形成与缓蚀研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 903-912.
Weiping LUO, Xue LUO, Yueting SHI, Xinchao WANG, Shengtao ZHANG, Fang GAO, Hongru LI. Preparation and Corrosion Inhibition of Super Hydrophobic Adsorption Film of Lotus Leaf Extract on Mild Steel[J]. Journal of Chinese Society for Corrosion and protection, 2022, 42(6): 903-912.

全文: PDF(5854 KB)   HTML
摘要: 

用新鲜荷叶作为研究对象,经过简便的乙醇回流萃取取得提取物。室温条件下,荷叶提取物能够在THF/HCl水溶液的混合溶液 (体积比为1/1,1.0 mol/L HCl溶液) 中产生聚集。傅立叶变换红外光谱以及X射线光电子能谱的结果证明了荷叶提取物在Q235钢样品表面发生化学作用,能够形成超疏水的吸附层。电化学结果表明荷叶提取物对碳钢在HCl溶液中具备良好的缓蚀性能,在0.4 g/L浓度下,最大缓蚀效率达到93.14%。

关键词 荷叶提取物碳钢缓蚀剂超疏水吸附层    
Abstract

In order to search for new green and low-cost organic corrosion inhibitors, the fresh lotus leave was selected as raw material, and then lotus leaf extract (LLE) was obtained by simple ethanol reflux extraction. The LLE could produce orderly aggregation material in a mixture of THF/HCl (tetrahydrofuran/HCl) solution (1.0 mol/L HCl solution) at room temperature. The results of Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) showed that the LLE underwent chemisorption on the surface of Q235 steel, and further the LLE could be adsorbed on the surface of mild steel, which formed super hydrophobic organic adsorption film. Electrochemical test results showed that lotus leaf extract had good corrosion inhibition performance for carbon steel in HCl solution. The maximal corrosion inhibition efficiency of LLE reached 93.14% for Q235 steel in HCl solution of 0.4 g/L.

Key wordslotus leaf extract    carbon steel    corrosion inhibitor    super hydrophobic adsorption layer
收稿日期: 2021-10-21     
ZTFLH:  TG174  
基金资助:国家自然科学基金(21878029);国家自然科学基金(21676035);重庆市自然科学基金(cstc2018jcyjAX0668);山东省自然科学基金(ZR2020QB180)
作者简介: 罗为平,女,1998年生,硕士生
图1  LLE在混合溶液中聚集一定时间后的SEM像
图2  LLE在混合溶液中聚集10 h的SEM像
图3  LLE的FT-IR谱及LLE聚集材料吸附在Q235钢表面的ATR-IR谱
图4  在1.0 mol/L HCl水溶液浸泡后Q235钢表面的Fe 2p3/2 XPS图谱
SampleChemistry stateBinging energy / eVFWHMs / eV
Cu-BareFe2O3/Fe3O4710.382.02
FeOOH711.662.02
FeCl3712.812.43
Cu-LLE aggregatesFe0707.351.75
Fe2O3/Fe3O4709.302.10
FeOOH711.202.25
表1  空白以及吸附了LLE聚集材料的Q235钢在1.0 mol/L盐酸溶液浸泡后表面Fe 2p XPS分析结果
图5  Q235钢表面的C 1s XPS图谱
SampleChemistry stateBinging energy eVFWHMs eV
Cu-BareC-C/C=C285.101.20
C-O286.561.20
C=O288.821.20
Cu-LLE aggregatesC-C/C=C284.901.05
C-O286.200.90
C-N286.801.00
C=O288.750.95
表2  空白以及吸附了LLE聚集材料的Q235钢表面C 1s的XPS分析结果
图6  吸附LLE聚集材料的Q235钢表面的N 1s XPS精细谱
SampleChemistry stateBinging energy eVFWHMs eV
Cu-LLE aggregatesC-N398.800.95
N-Fe399.241.10
表3  吸附了LLE聚集材料的Q235钢片表面N 1s的XPS分析结果
图7  不同表面处理状态的Q235钢在1 mol/L HCl溶液中浸泡6 h后的表面SEM形貌
图8  空白和吸附了不同浓度LLE的Q235钢在1 mol/L盐酸溶液中浸泡后的三维AFM图像
图9  Q235钢表面的接触角
图10  吸附了不同浓度LLE聚集材料的Q235钢电极在1 mol/L HCl溶液中的动电位极化曲线
Copper electrodeC / g·L-1Ecorr / V/SCEIcorr / μA·cm-2βc / mV·dec-1βa / mV·dec-1ηj / %
Blank----0.482718.9-111.062112.931---
LLE-aggregates0.1-0.460185.5-110.57168.55274.20
0.2-0.440129.9-112.05757.25181.93
0.3-0.44475.48-106.87256.03889.50
0.4-0.43749.32-112.41047.15293.14
0.5-0.45269.86-112.84156.38690.28
表4  吸附了不同浓度LLE聚集材料的Q235钢电极在1 mol/L HCl溶液中的动电位极化曲线参数
图11  吸附了不同浓度LLE聚集材料的Q235钢电极在1 mol/L HCl溶液中的Nyquist和Bode图
图12  不同表面状态的钢电极的电化学阻抗谱拟合等效电路图
Copper electrodeC / g·L-1Rs / Ω·cm2Rct / Ω·cm2Cdl / μF·cm-2nηj / %Χ 2 / 103
Blank---0.605642.73110.2750.9697---5.56
LLE-aggregates0.11.456147.461.1100.863571.012.91
0.21.095216.349.1300.864180.251.47
0.31.139410.242.8590.847189.589.05
0.41.309548.334.6060.813992.213.66
0.51.093345.446.3450.876987.631.19
表5  吸附了不同浓度LLE聚集材料的Q235钢电极在1 mol/L HCl溶液中的电化学阻抗参数
[1] Wang H M, Akid R. Encapsulated cerium nitrate inhibitors to provide high-performance anti-corrosion sol-gel coatings on mild steel [J]. Corros. Sci., 2008, 50: 1142
doi: 10.1016/j.corsci.2007.11.019
[2] Fayomi O, Popoola A P I. An investigation of the properties of Zn coated mild steel [J]. Int. J. Electrochem. Sci., 2012, 7: 6555
[3] Bayol E, Gürten A A, Dursun M, et al. Adsorption behavior and inhibition corrosion effect of sodium carboxymethyl cellulose on mild steel in acidic medium [J]. Acta Phys.-Chim. Sin., 2008, 24: 2236
doi: 10.1016/S1872-1508(08)60085-6
[4] Wang Z G, Hai C, Jiang J, et al. Corrosion behavior of Q235 steels in atmosphere at deyang district for one year [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 871
[4] (王志高, 海潮, 姜杰 等. Q235钢在德阳大气环境中腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 871)
[5] Zhang D Q, Tang Y M, Qi S J, et al. The inhibition performance of long-chain alkyl-substituted benzimidazole derivatives for corrosion of mild steel in HCl [J]. Corros. Sci., 2016, 102: 517
doi: 10.1016/j.corsci.2015.10.002
[6] Hashim N Z N, Anouar E H, Kassim K, et al. XPS and DFT investigations of corrosion inhibition of substituted benzylidene Schiff bases on mild steel in hydrochloric acid [J]. Appl. Surf. Sci., 2019, 476: 861
doi: 10.1016/j.apsusc.2019.01.149
[7] Singh P, Ebenso E E, Olasunkanmi L O, et al. Electrochemical, theoretical, and surface morphological studies of corrosion inhibition effect of green naphthyridine derivatives on mild steel in hydrochloric acid [J]. J. Phys. Chem., 2016, 120C: 3408
[8] Kharbach Y, Qachchachi F Z, Haoudi A, et al. Anticorrosion performance of three newly synthesized isatin derivatives on carbon steel in hydrochloric acid pickling environment: electrochemical, surface and theoretical studies [J]. J. Mol. Liq., 2017, 246: 302
doi: 10.1016/j.molliq.2017.09.057
[9] Verma C, Olasunkanmi L O, Ebenso E E, et al. Adsorption behavior of glucosamine-based, pyrimidine-fused heterocycles as green corrosion inhibitors for mild steel: experimental and theoretical studies [J]. J. Phys. Chem., 2016, 120C: 11598
[10] Moretti G, Quartarone G, Tassan A, et al. Inhibition of mild steel corrosion in 1N sulphuric acid through indole [J]. Mater. Corros., 1994, 45: 641
[11] Moretti G, Quartarone G, Tassan A, et al. Some derivatives of indole as mild steel corrosion inhibitors in 0.5 M sulphuric acid [J]. Br. Corros. J., 1996, 31: 49
doi: 10.1179/bcj.1996.31.1.49
[12] Moretti G, Quartarone G, Tassan A, et al. 5-Amino- and 5-chloro-indole as mild steel corrosion inhibitors in 1 N sulphuric acid [J]. Electrochim. Acta, 1996, 41: 1971
doi: 10.1016/0013-4686(95)00485-8
[13] Elavarasan S, Kannan K, Chandrasekaran V. 2-Methyl imidazole as a corrosion inhibitor for mild steel in acid medium [J]. Asian J. Chem., 2006, 18: 2637
[14] Mehdipour M, Ramezanzadeh B, Arman S Y. Electrochemical noise investigation of Aloe plant extract as green inhibitor on the corrosion of stainless steel in 1 M H2SO4 [J]. J. Ind. Eng. Chem., 2015, 21: 318
[15] Alvarez P E, Fiori-Bimbi M V, Neske A, et al. Rollinia occidentalis extract as green corrosion inhibitor for carbon steel in HCl solution [J]. J. Ind. Eng. Chem., 2018, 58: 92
doi: 10.1016/j.jiec.2017.09.012
[16] Qiang Y J, Zhang S T, Tan B C, et al. Evaluation of Ginkgo leaf extract as an eco-friendly corrosion inhibitor of X70 steel in HCl solution [J]. Corros. Sci., 2018, 133: 6
doi: 10.1016/j.corsci.2018.01.008
[17] Ji G, Anjum S, Sundaram S, et al. Musa paradisica peel extract as green corrosion inhibitor for mild steel in HCl solution [J]. Corros. Sci., 2015, 90: 107
doi: 10.1016/j.corsci.2014.10.002
[18] Deyab M A. Egyptian licorice extract as a green corrosion inhibitor for copper in hydrochloric acid solution [J]. J. Ind. Eng. Chem., 2015, 22: 384
[19] Odewunmi N A, Umoren S A, Gasem Z M. Utilization of watermelon rind extract as a green corrosion inhibitor for mild steel in acidic media [J]. J. Ind. Eng. Chem., 2015, 21: 239
[20] Li X H, Deng S D, Fu H. Inhibition of the corrosion of steel in HCl, H2SO4 solutions by bamboo leaf extract [J]. Corros. Sci., 2012, 62: 163
doi: 10.1016/j.corsci.2012.05.008
[21] Xiao P G, Li L D, Liu Y. A preliminary investigation on safety evaluation system for health foods [J]. China J. Chin. Mater. Med., 2005, 30: 9
[21] (肖培根, 李连达, 刘勇. 中药保健食品安全性评估系统的初步研究 [J]. 中国中药杂志, 2005, 30: 9)
[22] Zhao H W. Medical value and product development of Lotus leaf [J]. Mod. Agric. Sci. Technol., 2009, (18): 321
[22] (赵海雯. 荷叶的药用价值及产品开发 [J]. 现代农业科技, 2009, (18): 321)
[23] Li M, Zhao Z H, Xuan J, et al. Advances in studies on chemical constituents and pharmacological effects of lotus leaves [J]. J. Liaoning Univ. Tradit. Chin. Med., 2020, 22(1): 135
[23] (李敏, 赵振华, 玄静 等. 荷叶化学成分及其药理作用研究进展 [J]. 辽宁中医药大学学报, 2020, 22(1): 135)
[24] Xu J. Comparison of alkaloids content in lotus leaves at different growth stages [J]. Northwest Pharm. J., 2008, 23: 28
[24] (许菊. 荷叶不同生长期荷叶碱含量比较 [J]. 西北药学杂志, 2008, 23: 28)
[25] Wang X, Ren S F, Zhang D X, et al. Inhibition effect of soybean meal extract on corrosion of Q235 steel in hydrochloric acid medium [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 267
[25] (王霞, 任帅飞, 张代雄 等. 豆粕提取物在盐酸中对Q235钢的缓蚀性能 [J]. 中国腐蚀与防护学报, 2019, 39: 267)
[26] Mallaiya K, Subramaniam R, Srikandan S S, et al. Electrochemical characterization of the protective film formed by the unsymmetrical Schiff's base on the mild steel surface in acid media [J]. Electrochim. Acta, 2011, 56: 3857
doi: 10.1016/j.electacta.2011.02.036
[27] Ali-Löytty H, Louie M W, Singh M R, et al. Ambient-pressure XPS study of a Ni-Fe electrocatalyst for the oxygen evolution reaction [J]. J. Phys. Chem., 2016, 120C: 2247
[28] Morales-Gil P, Walczak M S, Cottis R A, et al. Corrosion inhibitor binding in an acidic medium: interaction of 2-mercaptobenizmidazole with carbon-steel in hydrochloric acid [J]. Corros. Sci., 2014, 85: 109
doi: 10.1016/j.corsci.2014.04.003
[29] Bouanis M, Tourabi M, Nyassi A, et al. Corrosion inhibition performance of 2, 5-bis (4-dimethylaminophenyl)-1, 3, 4-oxadiazole for carbon steel in HCl solution: Gravimetric, electrochemical and XPS studies [J]. Appl. Surf. Sci., 2016, 389: 952
doi: 10.1016/j.apsusc.2016.07.115
[30] Zarrouk A, Hammouti B, Lakhlifi T, et al. New 1 H -pyrrole-2, 5-dione derivatives as efficient organic inhibitors of carbon steel corrosion in hydrochloric acid medium: electrochemical, XPS and DFT studies [J]. Corros. Sci., 2015, 90: 572
doi: 10.1016/j.corsci.2014.10.052
[31] Singh P, Srivastava V, Quraishi M A. Novel quinoline derivatives as green corrosion inhibitors for mild steel in acidic medium: Electrochemical, SEM, AFM, and XPS studies [J]. J. Mol. Liq., 2016, 216: 164
doi: 10.1016/j.molliq.2015.12.086
[32] Chen N X, Zhang S T, Qiang Y J, et al. Inhibition effect of 1-vinyl-3-ethylimidazolium bromide for X65 steel in 0.5 M sulfuric acid solution [J]. Int. J. Electrochem. Sci., 2016, 11: 7230
[33] Zhang S T, Tao Z H, Li W H, et al. The effect of some triazole derivatives as inhibitors for the corrosion of mild steel in 1 M hydrochloric acid [J]. Appl. Surf. Sci., 2009, 255: 6757
doi: 10.1016/j.apsusc.2008.09.089
[34] Tao Z H, Zhang S T, Li W H, et al. Corrosion inhibition of mild steel in acidic solution by some oxo-triazole derivatives [J]. Corros. Sci., 2009, 51: 2588
doi: 10.1016/j.corsci.2009.06.042
[35] Feng L, Zhan S T, Xu Y, et al. The electron donating effect of novel pyrazolo-pyrimidine inhibitors on anticorrosion of Q235 steel in picking solution [J]. J. Mol. Liq., 2019, 286: 110893
doi: 10.1016/j.molliq.2019.110893
[36] Jiang L, Qiang Y J, Lei Z L, et al. Excellent corrosion inhibition performance of novel quinoline derivatives on mild steel in HCl media: experimental and computational investigations [J]. J. Mol. Liq., 2018, 255: 53
doi: 10.1016/j.molliq.2018.01.133
[37] Chen W, Huang D X, Wei F, et al. Inhibition effect of Brainea insignis extract against carbon steel corrosion in HCl solution [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 376
[37] (陈文, 黄德兴, 韦奉 等. 铁蕨提取物对碳钢在盐酸中的缓蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 376)
[38] Abboud Y, Hammouti B, Abourriche A, et al. 5-Naphthylazo-8-hydroxyquinoline (5NA8HQ) as a novel corrosion inhibitor for mild steel in hydrochloric acid solution [J]. Res. Chem. Intermed., 2012, 38: 1591
doi: 10.1007/s11164-012-0486-0
[39] Guo L, Zhu S H, Zhang S T, et al. Theoretical studies of three triazole derivatives as corrosion inhibitors for mild steel in acidic medium [J]. Corros. Sci., 2014, 87: 366
doi: 10.1016/j.corsci.2014.06.040
[1] 凡玉方, 张亚飞, 尹刘森, 赵聪慧, 何艳宾, 张传祥. 碳点在金属防腐领域中的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1237-1246.
[2] 王泉润, 侯进, 侯保荣, 田惠文. 气相缓蚀剂分析方法研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1189-1202.
[3] 吕正平, 李缘, 刘晓航, 崔中雨, 崔洪芝, 王昕, 逄昆, 李燚周. 酸性氯化钠溶液中硝酸钠和硫脲对7075铝合金缝隙腐蚀的协同缓蚀作用[J]. 中国腐蚀与防护学报, 2023, 43(6): 1367-1374.
[4] 何静, 于航, 傅梓瑛, 岳鹏辉. 水溶性缓蚀剂对建筑管道用Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1041-1048.
[5] 李树丽, 邓书端, 李向红. 铝植物缓蚀剂的研究进展与展望[J]. 中国腐蚀与防护学报, 2023, 43(5): 929-947.
[6] 周浩, 尤世界, 王胜利. 铜质文物在CO2 环境中的腐蚀行为及缓蚀剂研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1049-1056.
[7] 董红梅, 李宝毅, 冉博元, 王琦, 牛宇岚, 丁莉峰, 强玉杰. 一种环保型缓蚀剂利拉利汀对紫铜在硫酸中的缓蚀机理研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1031-1040.
[8] 邹文杰, 丁立, 张雪姣, 陈均. 环氧树脂/有机硅氧烷改性阳离子丙烯酸乳液复合涂层的研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 922-928.
[9] 郝文魁, 陈新, 徐玲铃, 韩钰, 陈云, 黄路遥, 祝志祥, 杨丙坤, 王晓芳, 张强. 电网碳钢、镀锌钢大气腐蚀等级图绘制研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 795-802.
[10] 王长罡, DANIEL Enobong Felix, 李超, 董俊华, 杨华, 张东玖. 海洋环境中碳钢和不锈钢螺栓紧固件的腐蚀机制差异研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 737-745.
[11] 周坤, 柳鑫华, 刘帅. 在酸性介质中脐橙皮提取物对不锈钢的缓蚀作用[J]. 中国腐蚀与防护学报, 2023, 43(3): 619-629.
[12] 夏晓健, 万芯媛, 陈云翔, 韩纪层, 陈奕扬, 严康骅, 林德源, 陈天鹏, 左晓梅, 孙宝壮, 程学群. 两种热处理工艺对3Cr钢腐蚀行为影响及机理研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 656-662.
[13] 黄苗, 王丽姿, 马晓青, 李向红. 核桃青皮提取物与Nd(NO3)3对Al在HCl溶液中的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2023, 43(3): 471-480.
[14] 赵艳亮, 赵景茂. 层状双金属氢氧化物对镁合金的保护作用及自愈性能研究进展[J]. 中国腐蚀与防护学报, 2023, 43(1): 1-5.
[15] 吴浩, 邓书端, 李向红. 菟丝子提取物与碘化钾对冷轧钢在盐酸中的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2023, 43(1): 77-86.