|
|
中锰TRIP钢氢致开裂性能研究现状与进展 |
马成( ), 崔彦发, 张青, 赵林林, 王立辉, 熊自柳 |
河钢集团钢研总院 石家庄 050000 |
|
Review of Hydrogen Embrittlement of Medium Manganese TRIP Steel |
MA Cheng( ), CUI Yanfa, ZHANG Qing, ZHAO Linlin, WANG Lihui, XIONG Ziliu |
Technology and Research Institute, HBIS Group, Shijiazhuang 050000, China |
引用本文:
马成, 崔彦发, 张青, 赵林林, 王立辉, 熊自柳. 中锰TRIP钢氢致开裂性能研究现状与进展[J]. 中国腐蚀与防护学报, 2022, 42(6): 885-893.
Cheng MA,
Yanfa CUI,
Qing ZHANG,
Linlin ZHAO,
Lihui WANG,
Ziliu XIONG.
Review of Hydrogen Embrittlement of Medium Manganese TRIP Steel[J]. Journal of Chinese Society for Corrosion and protection, 2022, 42(6): 885-893.
[1] |
Lee Y K, Han J. Current opinion in medium manganese steel [J]. Mater. Sci. Technol., 2015, 31: 843
doi: 10.1179/1743284714Y.0000000722
|
[2] |
Niikura M, Morris J W. Thermal processing of ferritic 5Mn steel for toughness at cryogenic temperatures [J]. Metall. Trans., 1980, 11A: 1531
|
[3] |
De Moor E, Matlock D K, Speer J G, et al. Austenite stabilization through manganese enrichment [J]. Scr. Mater., 2011, 64: 185
doi: 10.1016/j.scriptamat.2010.09.040
|
[4] |
Lee S J, Lee S, De Cooman B C. Mn partitioning during the intercritical annealing of ultrafine-grained 6% Mn transformation-induced plasticity steel [J]. Scr. Mater., 2011, 64: 649
doi: 10.1016/j.scriptamat.2010.12.012
|
[5] |
Heo Y U, Suh D W, Lee H C. Fabrication of an ultrafine-grained structure by a compositional pinning technique [J]. Acta Mater., 2014, 77: 236
doi: 10.1016/j.actamat.2014.05.057
|
[6] |
Hu B, Luo H W, Yang F, et al. Recent progress in medium-Mn steels made with new designing strategies, a review [J]. J. Mater. Sci. Technol., 2017, 33: 1457
doi: 10.1016/j.jmst.2017.06.017
|
[7] |
Li Y, Liu H W, Du Y H, et al. Applications and developments of AHSS in automobile industry [J]. Mater. Rev., 2011, 25(13): 101
|
[7] |
(李扬, 刘汉武, 杜云慧 等. 汽车用先进高强钢的应用现状和发展方向 [J]. 材料导报, 2011, 25(13): 101)
|
[8] |
Huang F, Zhou Q J. Progress and perspectives of hydrogen induced delayed fracture of high strength steels [J]. Bao-Steel Technol., 2015, (3): 11
|
[8] |
(黄发, 周庆军. 高强钢的氢致延迟断裂行为研究进展 [J]. 宝钢技术, 2015, (3): 11)
|
[9] |
Lynch S. Hydrogen embrittlement phenomena and mechanisms [J]. Corros. Rev., 2012, 30: 105
|
[10] |
Martin M L, Dadfarnia M, Nagao A, et al. Enumeration of the hydrogen-enhanced localized plasticity mechanism for hydrogen embrittlement in structural materials [J]. Acta Mater., 2019, 165: 734
doi: 10.1016/j.actamat.2018.12.014
|
[11] |
Liu Q L, Zhou Q J, Venezuela J, et al. A review of the influence of hydrogen on the mechanical properties of DP, TRIP, and TWIP advanced high-strength steels for auto construction [J]. Corros. Rev., 2016, 34: 127
doi: 10.1515/corrrev-2015-0083
|
[12] |
Miller R L. Ultrafine-grained microstructures and mechanical properties of alloy steels [J]. Metall. Mater. Trans., 1972, 3B: 905
|
[13] |
Xu H F, Zhao J, Cao W Q, et al. Heat treatment effects on the microstructure and mechanical properties of a medium manganese steel (0.2C-5Mn) [J]. Mater. Sci. Eng., 2012, 532A: 435
|
[14] |
Dai Z B, Ding R, Yang Z G, et al. Elucidating the effect of Mn partitioning on interface migration and carbon partitioning during quenching and partitioning of the Fe-C-Mn-Si steels: modeling and experiments [J]. Acta Mater., 2018, 144: 666
doi: 10.1016/j.actamat.2017.11.025
|
[15] |
Chen H, van der Zwaag S. Analysis of ferrite growth retardation induced by local Mn enrichment in austenite created by prior interface passages [J]. Acta Mater., 2013, 61: 1338
doi: 10.1016/j.actamat.2012.11.011
|
[16] |
Sun B H, Fazeli F, Scott C, et al. Microstructural characteristics and tensile behavior of medium manganese steels with different manganese additions [J]. Mater. Sci. Eng., 2018, 729A: 496
|
[17] |
Xu J P, Fu H, Wang Z, et al. Research progress and prospect of medium manganese steel [J]. Chin. J. Eng., 2019, 41: 557
|
[17] |
(徐娟萍, 付豪, 王正 等. 中锰钢的研究进展与前景 [J]. 工程科学学报, 2019, 41: 557)
|
[18] |
Tian Y Q, Li W, Song J Y, et al. Effect of C and Mn element partitioning behavior on microstructure and properties of cold-rolled medium manganese TRIP steel [J]. J. Iron Steel Res., 2019, 31: 312
|
[18] |
(田亚强, 黎旺, 宋进英 等. C和Mn元素配分行为对冷轧中锰TRIP钢组织性能的影响 [J]. 钢铁研究学报, 2019, 31: 312)
|
[19] |
Du P J, Yang D P, Bai M K, et al. Austenite stabilisation by two step partitioning of manganese and carbon in a Mn-TRIP steel [J]. Mater. Sci. Technol., 2019, 35: 2084
doi: 10.1080/02670836.2019.1572316
|
[20] |
Li N, Shi J, Chen W L, et al. Effect of carbon content on microstructure and mechanical properties of cold-rolled medium manganese steel [J]. Hot Work. Technol., 2012, 41(2): 5
|
[20] |
(李楠, 时捷, 陈为亮 等. 碳含量对冷轧中锰钢双相区退火组织和力学性能的影响 [J]. 热加工工艺, 2012, 41(2): 5)
|
[21] |
Seo C H, Kwon K H, Choi K, et al. Deformation behavior of ferrite-austenite duplex lightweight Fe-Mn-Al-C steel [J]. Scr. Mater., 2012, 66: 519
doi: 10.1016/j.scriptamat.2011.12.026
|
[22] |
Wang X H, Kang J, Li Y J, et al. Characterisation on Al-bearing hot-rolled TRIP steel produced through isothermal bainite transformation [J]. Mater. Sci. Technol., 2020, 36(2): 210
doi: 10.1080/02670836.2019.1695079
|
[23] |
Jang J M, Kim S J, Kang N H, et al. Effects of annealing conditions on microstructure and mechanical properties of low carbon, manganese transformation-induced plasticity steel [J]. Met. Mater. Int., 2009, 15: 909
doi: 10.1007/s12540-009-0909-7
|
[24] |
Sun B H, Fazeli F, Scott C, et al. The influence of silicon additions on the deformation behavior of austenite-ferrite duplex medium manganese steels [J]. Acta Mater., 2018, 148: 249
doi: 10.1016/j.actamat.2018.02.005
|
[25] |
Yu H C, Cai Z Z, Fu G Q, et al. Effect of V-Ti addition on microstructure evolution and mechanical properties of hot-rolled transformation-induced plasticity steel [J]. Acta Metall. Sin. (Engl. Lett.), 2019, 32: 352
doi: 10.1007/s40195-018-0796-3
|
[26] |
Lei M. Study of microstructure and mechanical properties of V-alloyed medium Mn steel [D]. Beijing: Beijing Jiaotong University, 2019
|
[26] |
(雷鸣. 钒合金化中锰钢组织及力学性能研究 [D]. 北京: 北京交通大学, 2019)
|
[27] |
Zhu Y S, Hu B, Luo H W. Influence of Nb and V on microstructure and mechanical properties of hot-rolled medium Mn steels [J]. Steel Res. Int., 2018, 89: 1700389
doi: 10.1002/srin.201700389
|
[28] |
Natsumeda H, Kitahara A, Hashimoto S. Effect of cold reduction on microstructure and mechanical property of 5% Mn steel [J]. Tetsu-to-Hagane, 2018, 104: 274
doi: 10.2355/tetsutohagane.TETSU-2017-069
|
[29] |
Magalhães A S, Dos Santos C E, Ferreira A O V, et al. Analysis of medium manganese steel through cold-rolling and intercritical annealing or warm-rolling [J]. Mater. Sci. Technol., 2019, 35: 2120
doi: 10.1080/02670836.2018.1463613
|
[30] |
Zhao X L. Study of the susceptibility to hydrogen embrittlement of medium-Mn steel [D]. Beijing: Central Iron & Steel Research Institute, 2019
|
[30] |
(赵晓丽. 高强塑积中锰钢氢脆敏感性的研究 [D]. 北京: 钢铁研究总院, 2019)
|
[31] |
Wang H S, Yuan G, Lan M F, et al. Microstructure and mechanical properties of a novel hot-rolled 4%Mn steel processed by intercritical annealing [J]. J. Mater. Sci., 2018, 53: 12570
doi: 10.1007/s10853-018-2512-0
|
[32] |
Han Y, Kuang S, Cao J L. Effect of continuous annealing time on microstructure and properties of warm rolled medium-Mn steel [J]. Automob. Technol. Mater., 2014, (10): 5
|
[32] |
(韩赟, 邝霜, 曹佳丽. 连续退火时间对温轧中锰钢组织性能的影响 [J]. 汽车工艺与材料, 2014, (10): 5)
|
[33] |
Zhao X L, Zhang Y J, Shao C W, et al. Thermal stability of retained austenite and mechanical properties of medium-Mn steel during tempering treatment [J]. J. Iron Steel Res. Int., 2017, 24: 830
doi: 10.1016/S1006-706X(17)30123-1
|
[34] |
Li Z C, Misra R D K, Ding H, et al. The significant impact of pre-strain on the structure-mechanical properties relationship in cold-rolled medium manganese TRIP steel [J]. Mater. Sci. Eng., 2018, 712A: 206
|
[35] |
Ding R, Yao Y J, Sun B H, et al. Chemical boundary engineering: a new route toward lean, ultrastrong yet ductile steels [J]. Sci. Adv., 2020, 6(13): 1430
doi: 10.1126/sciadv.aay1430
pmid: 32258395
|
[36] |
Zhu X, Zhang K, Li W, et al. Effect of retained austenite stability and morphology on the hydrogen embrittlement susceptibility in quenching and partitioning treated steels [J]. Mater. Sci. Eng., 2016, 658A: 400
|
[37] |
Wu K. The study of microstructure effect on resistance to hydrogen embrittlement and strength and plasticity in miedium-high carbon steel [D]. Shanghai: Shanghai Jiaotong University, 2017
|
[37] |
(吴珂. 中高碳钢强塑性组织调控与氢脆相关性研究 [D]. 上海: 上海交通大学, 2017)
|
[38] |
Han J, Nam J H, Lee Y K. The mechanism of hydrogen embrittlement in intercritically annealed medium Mn TRIP steel [J]. Acta Mater., 2016, 113: 1
doi: 10.1016/j.actamat.2016.04.038
|
[39] |
Jeong I, Ryu K M, Lee D G, et al. Austenite morphology and resistance to hydrogen embrittlement in medium Mn transformation-induced plasticity steel [J]. Scr. Mater., 2019, 169: 52
doi: 10.1016/j.scriptamat.2019.05.011
|
[40] |
Zhao X L, Zhang Y J, Hui W J, et al. Hydrogen embrittlement susceptibility of 0.1C-5Mn medium-Mn steel under different treatment conditions [J]. J. Iron Steel Res., 2019, 31: 837
|
[40] |
(赵晓丽, 张永健, 惠卫军 等. 不同处理状态下0.1C-5Mn中锰钢的氢脆敏感性 [J]. 钢铁研究学报, 2019, 31: 837)
|
[41] |
Du Y, Gao X H, Lan L Y, et al. Hydrogen embrittlement behavior of high strength low carbon medium manganese steel under different heat treatments [J]. Int. J. Hydrogen Energy, 2019, 44: 32292
doi: 10.1016/j.ijhydene.2019.10.103
|
[42] |
Shao C W. Study on microstructure control and hydrogen embrittlement susceptibility of Al-containing medium Mn steels with high product of strength to ductility [D]. Beijing: Beijing Jiaotong University, 2018
|
[42] |
(邵成伟. 高强塑积含铝中锰钢组织调控及氢脆敏感性研究 [D]. 北京: 北京交通大学, 2018)
|
[43] |
Wang Z, Xu J P, Li J X. Effect of heat treatment processes on hydrogen embrittlement in hot-rolled medium Mn steels [J]. Int. J. Hydrogen Energy, 2020, 45: 20004
doi: 10.1016/j.ijhydene.2020.04.241
|
[44] |
Xu J P, Wang Z, Fu H, et al. Effects of rolling and heat treatment on hydrogen embrittlement in medium-Mn steel [J]. Mater. Lett., 2021, 305: 130784
doi: 10.1016/j.matlet.2021.130784
|
[45] |
Wang Z, Xu J, Li J. Influence of microstructure on hydrogen embrittlement in hot-rolled medium Mn steels [J]. Mater. Sci. Eng., 2020, 780A: 139147
|
[46] |
Turnbull A, Hutchings R B. Analysis of hydrogen atom transport in a two-phase alloy [J]. Mater. Sci. Eng., 1994, 177A: 161
|
[47] |
Perng T P, Altstetter C J. Comparison of hydrogen gas embrittlement of austenitic and ferritic stainless-steels [J]. Metall. Trans., 1987, 18A: 123
|
[48] |
Sun B H, Krieger W, Rohwerder M, et al. Dependence of hydrogen embrittlement mechanisms on microstructure-driven hydrogen distribution in medium Mn steels [J]. Acta Mater., 2020, 183: 313
doi: 10.1016/j.actamat.2019.11.029
|
[49] |
Luo H W, Liu J H, Dong H. A novel observation on cementite formed during intercritical annealing of medium Mn steel [J]. Metall. Mater. Trans., 2016, 47A: 3119
|
[50] |
He J H, Tang X Y, Chen N P. Hydrogen induced cracking in a Ferrite-Austenite duplex stainless steel [J]. Acta Metall. Sin., 1989, 25(1): 37
|
[50] |
(何建宏, 唐祥云, 陈南平. 铁素体-奥氏体双相不锈钢的氢致开裂研究 [J]. 金属学报, 1989, 25(1): 37)
|
[51] |
Örnek C, Reccagni P, Kivisäkk U, et al. Hydrogen embrittlement of super duplex stainless steel-towards understanding the effects of microstructure and strain [J]. Int. J. Hydrogen Energy, 2018, 43: 12543
doi: 10.1016/j.ijhydene.2018.05.028
|
[52] |
Luo H W, Shi J, Wang C, et al. Experimental and numerical analysis on formation of stable austenite during the intercritical annealing of 5Mn steel [J]. Acta Mater., 2011, 59: 4002
doi: 10.1016/j.actamat.2011.03.025
|
[53] |
Park H S, Seol J B, Lim N S, et al. Study of the decomposition behavior of retained austenite and the partitioning of alloying elements during tempering in CMnSiAl TRIP steels [J]. Mater. Des., 2015, 82: 173
doi: 10.1016/j.matdes.2015.05.059
|
[54] |
Rashid M S, Rao B V N. Tempering characteristics of a vanadium containing dual phase steel [J]. Metall. Trans., 1982, 13A: 1679
|
[55] |
Sarikaya M, Jhingan A K, Thomas G. Retained austenite and tempered martensite embrittlement in medium carbon steels [J]. Metall. Trans., 1983, 14A: 1121
|
[56] |
Hui W J, Zhang Y J, Zhao X L, et al. Influence of cold deformation and annealing on hydrogen embrittlement of cold hardening bainitic steel for high strength bolts [J]. Mater. Sci. Eng., 2016, 662A: 528
|
[57] |
Zhao X L, Zhang Y J, Huang H T, et al. Effect of tempering treatment on hydrogen embrittlement sensitivity of cold-rolled and intercritically annealed medium-Mn 0.1C-5Mn steel [J]. Trans. Mater. Heat Treat., 2018, 39(10): 36
|
[57] |
(赵晓丽, 张永健, 黄海涛 等. 回火对冷轧后退火处理中锰钢0.1C-5Mn氢脆敏感性的影响 [J]. 材料热处理学报, 2018, 39(10): 36)
|
[58] |
Takahashi J, Kawakami K, Kobayashi Y, et al. The first direct observation of hydrogen trapping sites in TiC precipitation-hardening steel through atom probe tomography [J]. Scr. Mater., 2010, 63: 261
doi: 10.1016/j.scriptamat.2010.03.012
|
[59] |
Depover T, Verbeken K. Hydrogen trapping and hydrogen induced mechanical degradation in lab cast Fe-C-Cr alloys [J]. Mater. Sci. Eng., 2016, 669A: 134
|
[60] |
Depover T, Verbeken K. The detrimental effect of hydrogen at dislocations on the hydrogen embrittlement susceptibility of Fe-C-X alloys: an experimental proof of the HELP mechanism [J]. Int. J. Hydrogen Energy, 2018, 43: 3050
doi: 10.1016/j.ijhydene.2017.12.109
|
[61] |
Chen Y N, Wang Z J, Yang T, et al. Crystallization kinetics of amorphous lead zirconate titanate thin films in a microwave magnetic field [J]. Acta Mater., 2014, 71: 1
doi: 10.1016/j.actamat.2014.03.009
|
[62] |
Li J, Xu C, Ma X Y. Effect of controlled rolling and cooling processing on microstructures and properties of V-Ti microalloy steels [J]. J. North Univ. China (Nat. Sci. Ed.), 2014, 35: 88
|
[62] |
(李戬, 徐春, 马晓艺. 控轧控冷工艺对钒钛微合金钢组织性能的影响 [J]. 中北大学学报 (自然科学版), 2014, 35: 88)
|
[63] |
Ren X C, Chu W Y, Li J X, et al. The effects of inclusions and second phase particles on hydrogen-induced blistering in iron [J]. Mater. Chem. Phys., 2008, 107: 231
doi: 10.1016/j.matchemphys.2007.07.004
|
[64] |
Turnbull A. Perspectives on hydrogen uptake, diffusion and trapping [J]. Int. J. Hydrogen Energy, 2015, 40: 16961
doi: 10.1016/j.ijhydene.2015.06.147
|
[65] |
Wei F G, Tsuzaki K. Hydrogen absorption of incoherent TiC particles in iron from environment at high temperatures [J]. Metall. Mater. Trans., 2004, 35A: 3155
|
[66] |
Cheng L, Cai Q W, Xie B S, et al. Relationships among microstructure, precipitation and mechanical properties in different depths of Ti-Mo low carbon low alloy steel plate [J]. Mater. Sci. Eng., 2016, 651A: 185
|
[67] |
Jang J H, Lee C H, Heo Y U, et al. Stability of (Ti, M)C(M=Nb, V, Mo and W) carbide in steels using first-principles calculations [J]. Acta Mater., 2012, 60: 208
doi: 10.1016/j.actamat.2011.09.051
|
[68] |
Song E J, Baek S W, Nahm S H, et al. Effects of molybdenum addition on hydrogen desorption of TiC precipitation-hardened steel [J]. Met. Mater. Int., 2018, 24: 532
doi: 10.1007/s12540-018-0067-x
|
[69] |
Yamasaki S, Bhadeshia H K D H. M4C3 precipitation in Fe-C-Mo-V steels and relationship to hydrogen trapping [J]. Proc. R. Soc., 2006, 462: 2315
|
[70] |
Kumnick A J, Johnson H H. Deep trapping states for hydrogen in deformed iron [J]. Acta Metall., 1980, 28: 33
doi: 10.1016/0001-6160(80)90038-3
|
[71] |
Takahashi H, Takeyama T, Hara T. Electronmicroscopic study of micro-crack formed by hydrogen precipitation in pure iron [J]. J. Jpn. Inst. Met. Mater., 1979, 43: 492
|
[72] |
Laureys A, Van den Eeckhout E, Petrov R, et al. Effect of deformation and charging conditions on crack and blister formation during electrochemical hydrogen charging [J]. Acta Mater., 2017, 127: 192
doi: 10.1016/j.actamat.2017.01.013
|
[73] |
Sun S M, Gu J L, Chen N P. The influence of hydrogen on the sub-structure of the martensite and ferrite dual-phase steel [J]. Scr. Metall., 1989, 23: 1735
doi: 10.1016/0036-9748(89)90352-9
|
[74] |
Zhao J W, Jiang Z Y, Lee C S. Effects of tungsten on the hydrogen embrittlement behaviour of microalloyed steels [J]. Corros. Sci., 2014, 82: 380
doi: 10.1016/j.corsci.2014.01.042
|
[75] |
Chen L, Xiong X L, Tao X, et al. Effect of dislocation cell walls on hydrogen adsorption, hydrogen trapping and hydrogen embrittlement resistance [J]. Corros. Sci., 2020, 166: 108428
doi: 10.1016/j.corsci.2020.108428
|
[76] |
Zhao M C, Shan Y Y, Xiao F R, et al. Investigation on the H2S-resistant behaviors of acicular ferrite and ultrafine ferrite [J]. Mater. Lett., 2002, 57: 141
doi: 10.1016/S0167-577X(02)00720-6
|
[77] |
Zackay V F, Parker E R. The changing role of metastable austenite in the design of alloys [J]. Annu. Rev. Mater. Sci., 1976, 6: 139
doi: 10.1146/annurev.ms.06.080176.001035
|
[78] |
Zhang S, Findley K O. Quantitative assessment of the effects of microstructure on the stability of retained austenite in TRIP steels [J]. Acta Mater., 2013, 61: 1895
doi: 10.1016/j.actamat.2012.12.010
|
[79] |
Seo E J, Cho L, Estrin Y, et al. Microstructure-mechanical properties relationships for quenching and partitioning (Q&P) processed steel [J]. Acta Mater., 2016, 113: 124
doi: 10.1016/j.actamat.2016.04.048
|
[80] |
McCoy R A, Gerberich W W, Zackay V F. On the resistance of TRIP steel to hydrogen embrittlement [J]. Metall. Mater. Trans., 1970, 1B: 2031
|
[81] |
Tan X D, Ponge D, Lu W J, et al. Joint investigation of strain partitioning and chemical partitioning in ferrite-containing TRIP-assisted steels [J]. Acta Mater., 2020, 186: 374
doi: 10.1016/j.actamat.2019.12.050
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|