Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (5): 709-716    DOI: 10.11902/1005.4537.2021.237
  研究报告 本期目录 | 过刊浏览 |
放电等离子烧结超细晶ODS镍基合金的高温氧化行为研究
解磊鹏, 陈明辉(), 王金龙, 王福会
东北大学 沈阳材料科学国家研究中心东北大学联合研究分部 沈阳 110819
High Temperature Oxidation Behavior of Ultrafine Grained ODS Nickel-based Superalloy Prepared by Spark Plasma Sintering
XIE Leipeng, CHEN Minghui(), WANG Jinlong, WANG Fuhui
Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
全文: PDF(4483 KB)   HTML
摘要: 

通过机械合金化 (MA) 和放电等离子烧结 (SPS) 制备了Cr2O3颗粒强化的超细晶结构镍基高温合金 (ODS合金)。对比研究了不添加氧化物颗粒合金 (Base合金) 和ODS合金样品的微观结构和高温氧化行为。结果表明,在1200 ℃烧结过程中,Cr2O3完全转变为Al2O3。由于SPS快速烧结及弥散分布的原位Al2O3颗粒钉扎,抑制了晶粒长大,ODS合金具有十分细小的晶粒结构,其平均晶粒尺寸为0.98 μm;Base合金平均晶粒尺寸稍大,为1.54 μm。ODS合金在900 ℃下具有较好的抗氧化性能和较低的氧化速率,得益于其表面迅速生成了连续致密的内层α-Al2O3膜,能有效地阻止Ti和Cr向外扩散,表面生成少量保护性较差的TiO2和NiCr2O4。而Base合金表面则生成了以Al2O3为内层,TiO2和Cr2O3为中间层以及NiCr2O4为外层的多层结构氧化膜,并且其在初期的氧化速率较快,为1.66×10-7 mg2·cm-4·s-1,是ODS合金的2倍多。

关键词 高温合金氧化物弥散强化细晶结构高温氧化放电等离子烧结    
Abstract

Two ultrafine-grained Ni-based superalloys with or without the addition of micron Cr2O3 particles are prepared by mechanical alloying (MA) and spark plasma sintering (SPS). The microstructure and high temperature oxidation behavior of these two alloys are investigated. Results indicate that the Cr2O3 particles are completely transformed into Al2O3 after sintering at 1200 ℃. Owing to the high speed of sintering by SPS and the pinning effect of oxide dispersoids, the grain growth of the alloy was effectively inhibited during sintering, which makes the ODS alloy exhibits ultrafine grain structure with an average grain size of 0.98 μm, while the same alloy without addition of Cr2O3 particles (denoted as blank contrast alloy) has a larger average grain size of 1.54 μm. The ODS alloy has better oxidation resistance with lower oxidation rate at 900 ℃. A continuous and dense layer of α-Al2O3 scale has immediately formed on the surface of ODS alloy, thus effectively prevents the outward diffusion of Ti and Cr and the formation of less protective TiO2 and NiCr2O4. For the blank contrast alloy, a multilayered scale with Al2O3 as the inner layer, TiO2 and Cr2O3 as the middle layer and NiCr2O4 as the outer layer could formed on the surface, and its oxidation rate is 1.66×10-7 mg2·cm-4·s-1 in the initial stage, which is more than twice as much as that of the ODS alloy.

Key wordssuperalloy    oxide dispersion strengthening    fine grain structure    high temperature oxidation    spark plasma sintering
收稿日期: 2021-09-10     
ZTFLH:  TG142.14  
基金资助:国家自然科学基金(51871051);国家工业和信息技术部项目(MJ-2017-J-99)
通讯作者: 陈明辉     E-mail: mhchen@mail.neu.edu.cn
Corresponding author: CHEN Minghui     E-mail: mhchen@mail.neu.edu.cn
作者简介: 解磊鹏,男,1990年生,博士生

引用本文:

解磊鹏, 陈明辉, 王金龙, 王福会. 放电等离子烧结超细晶ODS镍基合金的高温氧化行为研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 709-716.
Leipeng XIE, Minghui CHEN, Jinlong WANG, Fuhui WANG. High Temperature Oxidation Behavior of Ultrafine Grained ODS Nickel-based Superalloy Prepared by Spark Plasma Sintering. Journal of Chinese Society for Corrosion and protection, 2022, 42(5): 709-716.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.237      或      https://www.jcscp.org/CN/Y2022/V42/I5/709

PowderCoCrAlTiWMoNbHfNi
Powder-115.99.05.01.75.93.92.60.2Bal.
Powedr-216.08.05.61.85.94.02.60.2Bal.
表1  FGH4097合金粉末的化学成分
图1  两种烧结态合金的XRD图谱
图2  两种烧结态合金的微观结构及特征
图3  ODS合金的TEM元素面扫结果
图4  两种合金在900 ℃下氧化100 h的动力学曲线
图5  两种样品在900 ℃下氧化100 h后的XRD图谱
图6  两种合金在900 ℃下氧化100 h后表面形貌及EDS分析
图7  两种合金样品在900 ℃氧化100 h后的截面微观形貌
图8  两种合金样品在900 ℃氧化20 h后的表面微观形貌
图9  两种合金样品在900 ℃氧化20 h后的截面形貌
1 Williams J C, Starke Jr E A. Progress in structural materials for aerospace systems [J]. Acta Mater., 2003, 51: 5775
doi: 10.1016/j.actamat.2003.08.023
2 Murty K L, Charit I. Structural materials for Gen-IV nuclear reactors: Challenges and opportunities [J]. J. Nucl. Mater., 2008, 383: 189
doi: 10.1016/j.jnucmat.2008.08.044
3 Gessinger G H. Powder Metallurgy of Superalloys [M]. London: Butterworths, 1984: 213
4 Suryanarayana C. Mechanical alloying and milling [J]. Prog. Mater. Sci., 2001, 46: 1
doi: 10.1016/S0079-6425(99)00010-9
5 Heilmaier M, Maier H J, Jung A, et al. Cyclic stress-strain response of the ODS nickel-base, superalloy PM 1000 under variable amplitude loading at high temperatures [J]. Mater. Sci. Eng., 2000, 281A: 37
6 Howson T E, Mervyn D A, Tien J K. Creep and stress rupture of a mechanically alloyed oxide dispersion and precipitation strengthened nickel-base superalloy [J]. Met. Tran., 1980, 11A: 1609
7 Guttmann V, González-Carrasco J L, Fattori H. Oxidation behavior of ODS alloy MA 6000 [J]. Oxid. Met., 1999, 51: 159
doi: 10.1023/A:1018810420729
8 Elzey D M, Arzt E. Oxide dispersion strengthened superalloys: the role of grain structure and dispersion during high temperature low cycle fatigue [A]. Proceedings of the Sixth International Symposium on Superalloys [C]. The Metallurgical Society of AIME, PA: 1988, 595
9 Weinbruch S, Anastassiadis A, Ortner H M, et al. On the mechanism of high-temperature oxidation of ODS superalloys: significance of yttrium depletion within the oxide scales [J]. Oxid. Met., 1999, 51: 111
doi: 10.1023/A:1018806319821
10 Zhang H, Liu Y, Chen X, et al. Microstructural homogenization and high-temperature cyclic oxidation behavior of a Ni-based superalloy with high-Cr content [J]. J. Alloy. Compd., 2017, 727: 410
doi: 10.1016/j.jallcom.2017.08.137
11 Sun D J, Liang C Y, Shang J L, et al. Effect of Y2O3 contents on oxidation resistance at 1150 ℃ and mechanical properties at room temperature of ODS Ni-20Cr-5Al alloy [J]. Appl. Surf. Sci., 2016, 385: 587
doi: 10.1016/j.apsusc.2016.05.143
12 Schaffer G B, Loretto M H, Smallman R E, et al. The stability of the oxide dispersion in INCONEL alloy MA6000 [J]. Acta Metall., 1989, 37 (9) : 2551
doi: 10.1016/0001-6160(89)90053-9
13 Jalowicka A, Nowak W, Naumenko D, et al. Effect of nickel base superalloy composition on oxidation resistance in SO2 containing, high pO2 environments [J]. Mater. Corros., 2014, 65: 178
14 Sun W Y, Chen M H, Bao Z B, et al. Breakaway oxidation of a low-Al content nanocrystalline coating at 1000 ℃ [J]. Surf. Coat. Technol., 2019, 358: 958
doi: 10.1016/j.surfcoat.2018.12.034
15 Huang Y, Peng X. The promoted formation of an α-Al2O3 scale on a nickel aluminide with surface Cr2O3 particles [J]. Corros. Sci., 2016, 112: 226
doi: 10.1016/j.corsci.2016.07.029
16 Huang Y C, Peng X, Chen X Q. TiO2 nanoparticles-assisted α-Al2O3 direct thermal growth on nickel aluminide intermetallics: template effect of the oxide with the hexagonal oxygen sublattice [J]. Corros. Sci., 2019, 153: 109
doi: 10.1016/j.corsci.2019.03.025
17 Huang Y C, Peng X, Chen X Q. The mechanism of θ- to α-Al2O3 phase transformation [J]. J. Alloy. Compd., 2021, 863: 158666
doi: 10.1016/j.jallcom.2021.158666
[1] 张勤, 梁涛沙, 王文, 赵朗朗, 姜岳峰. 纳米晶Ni-12Cr合金800 ℃高温氧化动力学和氧化膜结构演化[J]. 中国腐蚀与防护学报, 2022, 42(5): 733-742.
[2] 裴书博, 万冬阳, 周萍, 曹国钦, 胡俊华. 高熵涂层的制备工艺、组织结构和抗氧化腐蚀研究进展[J]. 中国腐蚀与防护学报, 2022, 42(5): 873-878.
[3] 王明好, 王欢, 刘叡, 孟凡帝, 刘莉, 王福会. 基于深度学习方法的N5/NiCrAlY涂层图像识别的研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 583-589.
[4] 程玉贤, 曹超, 蒋成洋, 陈明辉, 王福会. 模拟高温海洋环境中铝化物/搪瓷复合涂层腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 410-416.
[5] 邱盼盼, 舒小勇, 胡林丽, 杨韬, 房雨晴. Pt改性镍基高温合金铝化物涂层研究进展[J]. 中国腐蚀与防护学报, 2022, 42(2): 186-192.
[6] 李玲, 杜汐然, 曲品权, 李建呈, 王金龙, 古岩, 张甲, 陈明辉, 王福会. 真空热处理对多弧离子镀NiCoCrAlY涂层高温氧化行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(2): 243-248.
[7] 尹续保, 李育桥, 高荣杰. 铜基超疏水表面的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 93-98.
[8] 杨胜, 张慧杰, 向午渊, 欧阳涛, 肖芬, 周慧. 表面处理工艺对TC4钛合金微弧氧化膜层及电偶电流的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 905-908.
[9] 李瑞涛, 肖博, 刘晓, 朱忠亮, 程义, 李俊菀, 曹杰玉, 丁海民, 张乃强. 低合金耐热钢T23在高温超临界CO2环境中的腐蚀特性研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 327-334.
[10] 郑艳欣, 刘颖, 宋青松, 郑峰, 贾玉川, 韩培德. 含铁铜基陶瓷复合材料高温氧化行为与耐磨性研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[11] 徐勋虎,何翠群,向军淮,王玲,张洪华,郑晓冬. Co-20Re-25Cr-1Si合金在0.1 MPa纯O2中的高温氧化行为[J]. 中国腐蚀与防护学报, 2020, 40(1): 75-80.
[12] 李烽杰,陈明辉,张哲铭,王硕,王福会. 金属搪瓷高温防护涂层的制备及其抗热震行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 411-416.
[13] 夏俊捷,牛红志,刘敏,曹华珍,郑国渠,伍廉奎. 基于卤素效应的阳极氧化技术提高Ti48Al5Nb合金抗高温氧化性能[J]. 中国腐蚀与防护学报, 2019, 39(2): 96-105.
[14] 王玲,向军淮,张洪华,覃宋林. 3种不同Cr含量Co-20Re-Cr合金在1000和1100 ℃的高温氧化行为[J]. 中国腐蚀与防护学报, 2019, 39(1): 83-88.
[15] 虞礼嘉,梁文萍,林浩,缪强,黄彪子,崔世宇. 激光重熔YSZ热障涂层950 ℃的热腐蚀行为[J]. 中国腐蚀与防护学报, 2019, 39(1): 77-82.