Please wait a minute...
中国腐蚀与防护学报  2019, Vol. 39 Issue (5): 411-416    DOI: 10.11902/1005.4537.2019.137
  研究报告 本期目录 | 过刊浏览 |
金属搪瓷高温防护涂层的制备及其抗热震行为研究
李烽杰,陈明辉(),张哲铭,王硕,王福会
东北大学 沈阳材料科学国家研究中心腐蚀与防护研究部 沈阳 110819
Preparation and Thermal Shock Behavior of a Metal-enamel High-temperature Protective Coating
LI Fengjie,CHEN Minghui(),ZHANG Zheming,WANG Shuo,WANG Fuhui
Corrosion and Protection Division, Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
全文: PDF(5059 KB)   HTML
摘要: 

以低软化点的硼硅酸盐搪瓷作为粘结相,制备了金属搪瓷高温防护涂层,并研究了涂层的抗热震剥落行为。结果表明,硼硅酸盐搪瓷中含有SiO2的比例越高,搪瓷软化点越高。在硼硅比为0.6 (质量分数) 时,该搪瓷软化温度高于750 ℃。热震结果显示,含20%镍颗粒的金属搪瓷复合涂层抗热震性能优异,热震30次后涂层表面完好;而无金属颗粒添加或者金属含量过高 (40%) 时,热震条件下搪瓷涂层易开裂剥落。

关键词 搪瓷涂层高温合金热震    
Abstract

A metal-enamel composite high temperature protective coating was prepared by using borosilicate enamel with low softening point as bonding phase. Its thermal shock behavior was investigated via cyclically heating at 900 ℃ and quenching into room-temperature water. The higher the proportion of silica, the higher the softening point of the borosilicate enamel. When the ratio (mass fraction) of boron oxide to silica reaches 0.6, the softening point of the borosilicate enamel is higher than 750 ℃. Thermal shock test indicated that the metal-enamel composite coating containing 20% nickel particles had high thermal shock resistance, and the coating surface was intact after 30 thermal shock cycles. The enamel coating is easy to crack and peel under thermal shock condition when no metal particles are incorporated or the metal content is as high as 40%.

Key wordsenamel coating    superalloy    thermal shock
收稿日期: 2019-08-29     
ZTFLH:  TG174.4  
基金资助:国家自然科学基金(51871053)
通讯作者: 陈明辉     E-mail: mhchen@mail.neu.edu.cn
Corresponding author: Minghui CHEN     E-mail: mhchen@mail.neu.edu.cn
作者简介: 李烽杰,男,1992年生,博士生

引用本文:

李烽杰,陈明辉,张哲铭,王硕,王福会. 金属搪瓷高温防护涂层的制备及其抗热震行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 411-416.
Fengjie LI, Minghui CHEN, Zheming ZHANG, Shuo WANG, Fuhui WANG. Preparation and Thermal Shock Behavior of a Metal-enamel High-temperature Protective Coating. Journal of Chinese Society for Corrosion and protection, 2019, 39(5): 411-416.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.137      或      https://www.jcscp.org/CN/Y2019/V39/I5/411

Enamel powderB2O3SiO2Al2O3Na2OZrO2B2O3/SiO2
BS0.630.7551.2551210.6
BS0.845.5636.4451210.8
BS1.041.0041.0051211.0
BS1.244.7337.2751211.2
表1  4种搪瓷的成分 (mass fraction / %)
ContentCCrAlCoWBTiMoNbHfZrNi
Mass fraction/%0.0715.53.110.85.20.074.81.90.20.200.05Bal.
Atomic fraction/%0.3017.16.610.51.60.405.71.10.10.060.03Bal.
表2  K444高温合金的成分
CoatingBS0.6Al2O3Ni
N060400
N20483220
N40362440
表3  3种涂层的成分 (mass fraction / %)
图1  搪瓷样品的红外吸收光谱
图2  搪瓷样品在不同温度下的软化情况
图3  制备态复合涂层的宏观形貌
图4  制备态复合涂层的表面形貌
图5  制备态复合涂层的截面形貌
图6  搪瓷涂层热震动力学曲线
图7  热震后样品的宏观形貌
图8  3种搪瓷涂层热震循环30次后截面与表面微观形貌
1 PadtureN P, GellM, JordanE H. Thermal barrier coatings for gas-turbine engine applications [J]. Science, 2002, 296: 280
2 StreiffR. Databases and expert systems for high temperature corrosion and coatings [J]. Corros. Sci., 1993, 35: 1177
3 PomeroyM J. Coatings for gas turbine materials and long term stability issues [J]. Mater. Design, 2005, 26: 223
4 Rhys-JonesT N. Coatings for blade and vane applications in gas turbines [J]. Corros. Sci., 1989, 29: 623
5 MollardM, RannouB, BouchaudB, et al. Comparative degradation of nickel aluminized by slurry and by pack cementation under isothermal conditions [J]. Corros. Sci., 2013, 66: 118
6 DonaldI W. Preparation, properties and chemistry of glass- and glass-ceramic-to-metal seals and coatings [J]. J. Mater. Sci., 1993, 28: 2841
7 DonaldI W, MetcalfeB L, GerrardL A. Interfacial reactions in glass-ceramic-to-metal seals [J]. J. Am. Ceram. Soc., 2008, 91: 715
8 ZhengD Y, ZhuS L, WangF H. Oxidation and hot corrosion behavior of a novel enamel-Al2O3 composite coating on K38G superalloy [J]. Surf. Coat. Technol., 2006, 200: 5931
9 ChenM H, ShenM L, ZhuS L, et al. Preparation and thermal shock behavior at 1000 ℃ of a glass-alumina-NiCrAlY tri-composite coating on K38G superalloy [J]. Surf. Coat. Technol., 2012, 206: 2566
10 SolaA, BellucciD, CannilloV, et al. Bioactive glass coatings: A review [J]. Surf. Eng., 2011, 27: 560
11 SarkarS, DattaS, DasS, et al. Oxidation protection of gamma-titanium aluminide using glass-ceramic coatings [J]. Surf. Coat. Technol., 2009, 203: 1797
12 DasS, DattaS, BasuD, et al. Thermal cyclic behavior of glass-ceramic bonded thermal barrier coating on nimonic alloy substrate [J]. Ceram. Int., 2009, 35: 2123
13 ChenM H, LiW B, ShenM L, et al. Glass coatings on stainless steels for high-temperature oxidation protection: Mechanisms [J]. Corros. Sci., 2014, 82: 316
14 LiW B, ChenM H, WuM Y, et al. Microstructure and oxidation behavior of a SiC-Al2O3-glass composite coating on Ti-47Al-2Cr-2Nb alloy [J]. Corros. Sci., 2014, 87: 179
15 NogamiM. Glass preparation of the ZrO2-SiO2 system by the sol-gel process from metal alkoxides [J]. J. Non-Cryst. Solids, 1985, 69: 415
16 SarnoR D, TomozawaM. Toughening mechanisms for a zirconia-lithium aluminosilicate glass-ceramic [J]. J. Mater. Sci., 1995, 30: 4380
17 KrsticV V, NicholsonP S, HoaglandR G. Toughening of glasses by metallic particles [J]. J. Am. Ceram. Soc., 1981, 64: 499
18 DlouhyI, BoccacciniA R. Preparation, microstructure and mechanical properties of metal-particulate/glass-matrix composites [J]. Compos. Sci. Technol., 1996, 56: 1415
19 EfimovA M. Quantitative IR spectroscopy: Applications to studying glass structure and properties [J]. J. Non-Cryst. Solids, 1996, 203: 1
20 DarwishH, GomaaM M. Effect of compositional changes on the structure and properties of alkali-alumino borosilicate glasses [J]. J. Mater. Sci.Mater. Electron., 2006, 17: 35
21 HuangC, BehrmanE C. Structure and properties of calcium aluminosilicate glasses [J]. J. Non-Cryst. Solids, 1991, 128: 310.
22 HassanA K, B?rjessonL, TorellL M. The boson peak in glass formers of increasing fragility [J]. J. Non-Cryst. Solids, 1994, 172-174: 154
23 StochL, ?rodaM. Infrared spectroscopy in the investigation of oxide glasses structure [J]. J. Mol. Struct., 1999, 511/512: 77
24 WuM Y, ChenM H, ZhuS L, et al. Protection mechanism of enamel-alumina composite coatings on a Cr-rich nickel-based superalloy against high-temperature oxidation [J]. Surf. Coat. Technol., 2016, 285: 57
[1] 任岩, 钱余海, 张鑫涛, 徐敬军, 左君, 李美栓. 热震对包覆ZrB2-SiC-La2O3/SiC涂层渗硅石墨力学性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 29-35.
[2] 虞礼嘉,梁文萍,林浩,缪强,黄彪子,崔世宇. 激光重熔YSZ热障涂层950 ℃的热腐蚀行为[J]. 中国腐蚀与防护学报, 2019, 39(1): 77-82.
[3] 宋增意, 刘莉, 邓丽, 孙元, 周亦胄. N5镍基单晶高温合金在王水中的电化学溶解行为研究[J]. 中国腐蚀与防护学报, 2018, 38(4): 365-372.
[4] 孙井永,李秋实,郭洪波,宫声凯. Ni-Al涂层与单晶合金互扩散行为及其对界面合金组织稳定性的影响[J]. 中国腐蚀与防护学报, 2016, 36(5): 497-504.
[5] 吴多利, 张洪宇, 韦华, 郑启, 金涛, 孙晓峰. 4种改性的铝化物涂层对DZ38G合金热腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2014, 34(6): 502-506.
[6] 鲁金涛, 谷月峰. 电站锅炉关键部件材料高温蒸汽氧化研究进展[J]. 中国腐蚀与防护学报, 2014, 34(1): 19-26.
[7] 郭永安,李柏松,赖万慧,郭建亭,周兰章. 铸造镍基合金K444在900℃空气中的长期氧化行为[J]. 中国腐蚀与防护学报, 2012, 32(4): 285-290.
[8] 张泽海,孟杰. 一种镍基单晶高温合金的恒温氧化行为[J]. 中国腐蚀与防护学报, 2010, 30(4): 337-340.
[9] 刘杨;王磊;李伟涛;王富强. 电场处理对GH3044合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2010, 30(2): 129-134.
[10] 于忠锋; 郑志; 刘恩泽; 于永泗; 朱耀宵 . 两种低偏析镍基高温合金抗热腐蚀性能的研究[J]. 中国腐蚀与防护学报, 2008, 28(5): 277-281 .
[11] 杨世伟; 刘海涛; 朱玲斌; 娄瑾 . K4104合金渗Al-Si涂层抗高温氧化性能研究[J]. 中国腐蚀与防护学报, 2006, 26(6): 371-375 .
[12] 李云; 郭建亭; 袁超; 杨洪才; 方龙; 刘学贵 . 镍基铸造高温合金K35的热腐蚀行为[J]. 中国腐蚀与防护学报, 2005, 25(4): 250-255 .
[13] 韩光炜; 冯涤; 邓波; 陈锐铭; 李丁川 . 镍基高温合金的灰化破坏[J]. 中国腐蚀与防护学报, 2004, 24(2): 79-82 .
[14] 邓畅光; 邝子奇 . 稀土硅铁对TBCs梯度热障涂层组织与性能影响的研究[J]. 中国腐蚀与防护学报, 2002, 22(3): 176-179 .
[15] 袁福河; 孙晓峰; 管恒荣 . 钴基高温合金的循环氧化行为研究[J]. 中国腐蚀与防护学报, 2002, 22(2): 115-117 .