Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (3): 410-416    DOI: 10.11902/1005.4537.2021.223
  中国腐蚀与防护学会杰出青年学术成就奖论文专栏 本期目录 | 过刊浏览 |
模拟高温海洋环境中铝化物/搪瓷复合涂层腐蚀行为研究
程玉贤1(), 曹超2, 蒋成洋2, 陈明辉2, 王福会2
1.中国航发沈阳黎明航空发动机有限责任公司 沈阳 110043
2.沈阳材料科学国家研究中心东北大学联合研究分部 沈阳 110819
Corrosion Behavior of Enamel/aluminide Composite Coating in a Simulated High Temperature Marine Environment
CHENG Yuxian1(), CAO Chao2, JIANG Chengyang2, CHEN Minghui2, WANG Fuhui2
1.AECC Shenyang Liming Aero-Engine Co. Ltd. , Shenyang 110043, China
2.Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
全文: PDF(5701 KB)   HTML
摘要: 

对镍基高温合金GH4169基体先采用包埋渗铝工艺制备铝化物涂层,随后在渗铝涂层表面喷烧搪瓷涂层,得到了渗铝+搪瓷复合涂层。该涂层外层由搪瓷涂层组成,厚度约为40 μm;中间层为渗铝涂层,厚度约20 μm,主要为Ni2Al3相,搪瓷涂层和渗铝涂层结合良好;内层为互扩散区,厚度约为3 μm。分别考察了搪瓷+渗铝复合涂层、渗铝涂层和GH4169合金基体在650 ℃ NaCl+水蒸汽+氧气中进行模拟高温海洋环境腐蚀实验。结果表明,渗铝涂层和合金中的Fe和Cr在NaCl+水蒸汽协同腐蚀作用下发生氧化-氯化自催化反应,表面的氧化膜破坏严重。搪瓷涂层隔绝了NaCl和水蒸汽等腐蚀介质,从而阻断氧化-氯化自催化反应,保护了渗铝涂层和合金。

关键词 镍基高温合金渗铝搪瓷高温海洋腐蚀    
Abstract

The enamel/aluminide composite coating on Ni-based superalloy GH4169 is prepared by two-step process i.e, pack cementation and subsequent spray/fired enamel coating. The coating mainly consists of three layers: the outer layer of enamel coating (40 μm), and the middle layer of aluminide coating mainly composed of Ni2Al3 phase (~20 μm), and the inner layer of an interdiffusion zone of about 3 μm in thickness. The corrosion behavior of enamel/aluminide composite coating/GH4169, aluminide coating/GH4169 and blank GH4169 alloy respectively were investigated beneath NaCl deposits in atmosphere of oxygen flow carrying water vapor. The results show that the oxidation and chlorination of elements Fe and Cr in the aluminide coating and alloy can autocatalytically ocurr due to the presence of synergistic reaction of NaCl with water vapor, thereby the oxide scale on the surface is seriously damaged. The enamel coating could isolate the corrosive media such as NaCl and water vapor from the aluminide coating/GH4169, thus blocking the oxidation-chlorination autocatalytic reaction, thereby, the corrosion of the aluminide coating/alloy is retarded.

Key wordsNi-based superalloy    aluminization    enamel    high temperature marine corrosion
收稿日期: 2021-09-01     
ZTFLH:  TG172  
基金资助:辽宁省“兴辽英才计划”(XLYC1807256);辽宁省“百千万人才工程”和沈阳市中青年科技创新人才支持计划(RC190351)
通讯作者: 程玉贤     E-mail: leo100223@163.com
Corresponding author: CHENG Yuxian     E-mail: leo100223@163.com
作者简介: 程玉贤,男,1981年生,博士,研究员级高级工程师

引用本文:

程玉贤, 曹超, 蒋成洋, 陈明辉, 王福会. 模拟高温海洋环境中铝化物/搪瓷复合涂层腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 410-416.
Yuxian CHENG, Chao CAO, Chengyang JIANG, Minghui CHEN, Fuhui WANG. Corrosion Behavior of Enamel/aluminide Composite Coating in a Simulated High Temperature Marine Environment. Journal of Chinese Society for Corrosion and protection, 2022, 42(3): 410-416.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.223      或      https://www.jcscp.org/CN/Y2022/V42/I3/410

图1  渗铝涂层和渗铝+搪瓷涂层原始形态的XRD图谱
图2  渗铝涂层和渗铝+搪瓷涂层原始截面形貌
图3  GH4169合金以及带涂层样腐蚀动力学曲线
图4  GH4169合金以及带涂层样腐蚀100 h后的XRD图谱
图5  GH4169合金以及带涂层样腐蚀100 h后的表面形貌
图6  3种样品腐蚀100 h后的截面形貌
SampleAlCrFeNiNb
1#---2.82.618.21.2
2#34.00.50.68.5---
3#41.73.94.79.50.9
4#32.10.60.61.9---
表1  图6中红色区域EDS成分
1 Bu W X. The study on quantitative phase analysis method and application of GH169 alloy [D]. Harbin: Harbin University of Science and Technology
1 卜文学. GH169合金定量相分析方法及其应用的研究 [D]. 哈尔滨: 哈尔滨理工大学)
2 Greene G A, Finfrock C C. Oxidation of Inconel 718 in air at high temperatures [J]. Oxid. Met., 2001, 55: 505
3 Cui T, Wang J Q, Wang X X, et al. High temperature oxidation of superalloy GH4169 [J]. Corros. Sci. Prot. Technol., 2004, 16: 192
3 崔彤, 王介强, 王晓轩等. GH4169合金高温氧化特征 [J]. 腐蚀科学与防护技术, 2004, 16: 192
4 Saladi S, Menghani J, Prakash S. A study on the cyclic oxidation behavior of detonation-gun-sprayed Ni-5Al coatings on Inconel-718 at 900 ℃ [J]. J. Mater. Eng. Perform., 2014, 23: 4394
5 Saladi S, Menghani J, Prakash S. Hot corrosion behaviour of detonation-gun sprayed Cr3C2-NiCr coating on Inconel-718 in molten salt environment at 900 ℃ [J]. Trans. Indian Ins. Met., 2014, 67: 623
6 Koech P K, Wang C J. High-Temperature corrosion behaviour of aluminized-coated and uncoated alloy 718 under cyclic oxidation and corrosion in NaCl vapour at 750 ℃ [J]. Oxid. Met., 2018, 90: 713
7 Kumar S, Satapathy B, Pradhan D, et al. Effect of surface modification on the hot corrosion resistance of Inconel 718 at 700 ℃ [J]. Mater. Res. Express, 2019, 6: 086549
8 Yang S S, Yang L L, Chen M H, et al. Understanding of failure mechanisms of the oxide scales formed on nanocrystalline coatings with different Al content during cyclic oxidation [J]. Acta Mater., 2021, 205: 116576
9 Jiang C Y, Qian L Y, Feng M, et al. Benefits of Zr addition to oxidation resistance of a single-phase (Ni,Pt) Al coating at 1373 K [J]. J. Mater. Sci. Technol., 2019, 35: 1334
10 Jiang C Y, Yang Y F, Zhang Z Y, et al. A Zr-doped single-phase Pt-modified aluminide coating and the enhanced hot corrosion resistance [J]. Corros. Sci., 2018, 133: 406
11 Liao Y M, Zhang B, Chen M H, et al. Self-healing metal-enamel composite coating and its protection for TiAl alloy against oxidation under thermal shock in NaCl solution [J]. Corros. Sci., 2020, 167: 108526
12 Feng M, Chen M H, Yu Z D, et al. Comparative study of thermal shock behavior of the arc ion plating NiCrAlY and the enamel based composite coatings [J]. Acta Metall. Sin., 2017, 53: 1636 丰敏, 陈明辉, 余中狄等,多弧离子镀NiCrAlY涂层与搪瓷基复合涂层的抗热震行为对比研究 [J]. 金属学报. 2017, 53: 1636
13 Chen K, Chen M H, Yu Z D, et al. Simulating sulfuric acid dew point corrosion of enamels with different contents of silica [J]. Corros. Sci., 2017, 127: 201
14 Yang Y F, Jiang C Y, Bao Z B, et al. Effect of aluminisation characteristics on the microstructure of single phase β-(Ni,Pt) Al coating and the isothermal oxidation behaviour [J]. Corros. Sci., 2016, 106: 43
15 Yang Y F, Jiang C Y, Yao H R, et al. Preparation and enhanced oxidation performance of a Hf-doped single-phase Pt-modified aluminide coating [J]. Corros. Sci., 2016, 113: 17
16 Jiang C Y, Yang Y F, Zhang Z Y, et al. Preparation and enhanced hot corrosion resistance of a Zr-doped PtAl2+(Ni, Pt) Al dual-phase coating [J]. Acta Metall. Sin., 2018, 54: 581
16 蒋成洋, 阳颖飞, 张正义等. 一种Zr改性双相PtAl2+(Ni, Pt)Al涂层的制备及热腐蚀行为研究 [J]. 金属学报, 2018, 54: 581
17 Li M S. High Temperature Corrosion of Metal [M]. Beijing: Beijing Industry Press, 2001
17 李美栓. 金属的高温腐蚀 [M]. 北京: 北京工业出版社, 2001
18 Yang L L, Chen M H, Wang J L, et al. A duplex nanocrystalline coating for high-temperature applications on single-crystal superalloy [J]. Corros. Sci., 2016, 102: 72
19 Wang J L, Chen M H, Cheng Y X, et al. Hot corrosion of arc ion plating NiCrAlY and sputtered nanocrystalline coatings on a nickel-based single-crystal superalloy [J]. Corros. Sci., 2017, 123: 27
20 Chen M H, Zhu S L, Shen M L, et al. Effect of NiCrAlY platelets inclusion on the mechanical and thermal shock properties of glass matrix composites [J]. Mater. Sci. Eng., 2011, 528A: 1360
21 Chen M H, Zhu S L, Wang F H. Strengthening mechanisms and fracture surface characteristics of silicate glass matrix composites with inclusion of alumina particles of different particle sizes [J]. Physica, 2013, 413B: 15
22 Chen K, Chen M H, Yi A H, et al. Thermal shock and sulfuric acid corrosion behavior of enamel-nano-Ni composite/enamel-nano-nickel composite coating [J]. Int. J. Appl. Glass Sci., 2020, 11: 784
23 Yu Z D, Chen M H, Chen K, et al. Corrosion of enamel with and without CaF2 in molten aluminum at 750 ℃ [J]. Corros. Sci., 2019, 148: 228
24 Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications [J]. Science, 2002, 296: 280
25 Chen M H, Zhu S L, Wang F H. Crystallization behavior of SiO2-Al2O3-ZnO-CaO glass system at 1123-1273 K [J]. J. Am. Ceram. Soc., 2010, 93: 3230
26 Shu Y H, Wang F H, Wu W T. Corrosion behavior of Ti60 alloy coated with a solid NaCl deposit in O2 plus water vapor at 500~700 ℃ [J]. Oxid. Met., 1999, 52: 463
27 Wang F H, Geng S J, Zhu S L. Corrosion behavior of a sputtered K38G nanocrystalline coating with a solid NaCl deposit in wet oxygen at 600 to 700 ℃ [J]. Oxid. Met., 2002, 58: 185
28 Cao M, Liu L, Yu Z F, et al. Studies on the corrosion behavior of Fe-20Cr alloy in NaCl solution spray at 600 ℃ [J]. Corros. Sci., 2018, 133: 165
29 Xiong Y X, Zhu S L, Wang F H. Synergistic corrosion behavior of coated Ti60 alloys with NaCl deposit in moist air at elevated temperature [J]. Corros. Sci., 2008, 50(1): 15
30 Barin I. Thermochemical Data of Pure Substance [M]. 3rd ed. Weinheim, Germany: Wiley-VCH, 1995
[1] 李烽杰,陈明辉,张哲铭,王硕,王福会. 金属搪瓷高温防护涂层的制备及其抗热震行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 411-416.
[2] 虞礼嘉,梁文萍,林浩,缪强,黄彪子,崔世宇. 激光重熔YSZ热障涂层950 ℃的热腐蚀行为[J]. 中国腐蚀与防护学报, 2019, 39(1): 77-82.
[3] 郭永安,李柏松,赖万慧,郭建亭,周兰章. 铸造镍基合金K444在900℃空气中的长期氧化行为[J]. 中国腐蚀与防护学报, 2012, 32(4): 285-290.
[4] 马方容,李金许,褚武扬,张万灵,杨大可. 搪瓷钢的氢扩散研究[J]. 中国腐蚀与防护学报, 2010, 30(4): 269-272.
[5] 张泽海,孟杰. 一种镍基单晶高温合金的恒温氧化行为[J]. 中国腐蚀与防护学报, 2010, 30(4): 337-340.
[6] 罗宏. SUS304ss包埋粉末渗铝的耐蚀性能[J]. 中国腐蚀与防护学报, 2009, 29(5): 344-348.
[7] 任鑫; 汪信; 王福会 . 溅射NiCrAlY渗铝涂层的高温氧化行为[J]. 中国腐蚀与防护学报, 2006, 26(6): 365-370 .
[8] 杨世伟; 刘海涛; 朱玲斌; 娄瑾 . K4104合金渗Al-Si涂层抗高温氧化性能研究[J]. 中国腐蚀与防护学报, 2006, 26(6): 371-375 .
[9] 田秀娟; 王福会; 李庆芬 . 搪瓷/NiCrAlY复合涂层的抗高温氧化及热腐蚀行为[J]. 中国腐蚀与防护学报, 2005, 25(6): 344-350 .
[10] 李华飞; 徐金文; 刘根凡 . 渗铝钢的抗氢损伤性能[J]. 中国腐蚀与防护学报, 2005, 25(4): 237-240 .
[11] 高红霞 . 渗铝304不锈钢不同实验方法的SCC敏感性评价[J]. 中国腐蚀与防护学报, 2004, 24(5): 289-292 .
[12] 张亚明; 李美栓 . 16Mn钢渗铝涂层在海水淬冷时的循环氧化行为[J]. 中国腐蚀与防护学报, 2002, 22(1): 44-47 .
[13] 高原;贺志勇;徐重. 空心阴极辉光放电膏剂离子渗铝[J]. 中国腐蚀与防护学报, 1997, 17(4): 286-290.
[14] 彭晓;沈嘉年;胡武生;苑柯琦;周龙江;李铁藩. 高温合金M17和M17F抗氧化性能的比较研究[J]. 中国腐蚀与防护学报, 1996, 16(1): 20-28.
[15] 辛丽;李美栓;李铁藩. 离子注入钇对Ni-15Cr-6Al合金渗铝层高温氧化行为的影响[J]. 中国腐蚀与防护学报, 1996, 16(1): 42-46.