Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (4): 705-708    DOI: 10.11902/1005.4537.2021.127
  研究报告 本期目录 | 过刊浏览 |
纳米埃洛石装载苯并三氮唑自修复涂层研究
张正阳1, 郭子新2, 周欣1(), 孙海静1, 孙杰1
1.沈阳理工大学环境与化学工程学院 沈阳 110159
2.辽宁科技学院冶金工程学院 本溪 117002
Preparation and Performance of Epoxy Resin Coating with Benzotriazole Inhibitor Charged Nano-halloysite Tubes
ZHANG Zhengyang1, GUO Zixin2, ZHOU Xin1(), SUN Haijing1, SUN Jie1
1.School of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang 110159, China
2.School of Environmental and Chemical Engineering Liaoning Institute of Science and Technology, Benxi 117002, China
全文: PDF(2288 KB)   HTML
摘要: 

研究了高温微波加热改性后的埃洛石纳米管在装载金属缓蚀剂苯并三氮唑后,利用超声波振荡法分散,用差热分析测定样品的装载量,采用扫描电镜对涂层的表面形貌进行观察,采用电化学阻抗方法对涂层腐蚀性能进行测试。结果表明,改性之后纳米埃洛石的表面形貌呈现破碎的管状结构的聚合体,超声震荡8 h具有最好的担载效果,苯并三氮唑负载在纳米埃洛石中形成的环氧涂层具有良好的保护金属材料的作用。

关键词 纳米埃洛石管缓蚀剂苯三唑自修复涂层    
Abstract

Halloysite nanotubes were modified by microwave heating, and then charged with metal corrosion inhibitor benzotriazole, while dispersed via ultrasonic vibration in a solution containing tetraethyl orthosilicate and silane coupling agent. Finally, the self-healing coating made of epoxy resin and the prepared halloysite nanotubes was applied on brass plate. The charging capacity of inhibitor into halloysite nanotubes is measured by differential thermal analysis, and the corrosion performance of the coating is assessed by electrochemical impedance method. SEM observation revealed that the surface morphology of nano halloysite nanotubes after microwave heating presented as a broken tubular structure like aggregates. The charging amount of corrosion inhibitor varied with the charging time during ultrasonic vibration. The charging efficiency of corrosion inhibitor benzotriazole for halloysite nanotubes may reach the best by ultrasonic vibration for 8 h. The electrochemical impedance increases with time for the coating/brass plate, which implies that the epoxy coating coupled with halloysite nanotubes charged with benzotriazole inhibitor has a good protective effectiveness for metal materials.

Key wordshalloysite nanotube    corrosion inhibitor    benzotriazole    smart coating
收稿日期: 2021-06-05     
ZTFLH:  TG174.4  
基金资助:2019年辽宁省教育厅一般科学研究项目(L2019lkyjc-01);2020年沈阳理工大学高层次人才引进基金项目(1010147000903)
通讯作者: 周欣     E-mail: zhouxin@alum.imr.ac.cn
Corresponding author: ZHOU Xin     E-mail: zhouxin@alum.imr.ac.cn
作者简介: 张正阳,男,1997年生,硕士生

引用本文:

张正阳, 郭子新, 周欣, 孙海静, 孙杰. 纳米埃洛石装载苯并三氮唑自修复涂层研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 705-708.
Zhengyang ZHANG, Zixin GUO, Xin ZHOU, Haijing SUN, Jie SUN. Preparation and Performance of Epoxy Resin Coating with Benzotriazole Inhibitor Charged Nano-halloysite Tubes. Journal of Chinese Society for Corrosion and protection, 2022, 42(4): 705-708.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.127      或      https://www.jcscp.org/CN/Y2022/V42/I4/705

图1  微波处理前后埃洛石纳米管的SEM形貌
图2  不同时间超声振荡后BTA-HNTs的TG和DTG曲线
图3  在3.5%NaCl溶液中纳米改性埃落石装载BTA涂层的电化学阻抗谱图
图4  电化学阻抗谱等效电路图
t / h

Rs

Ω·cm2

CPE1

F·cm-2

n1

Rct

Ω·cm2

CPE2

F·cm-2

n2

Rf

Ω·cm2

014.912.39×10-50.8112.11.46×10-50.98180
613.913.63×10-60.8271.65.11×10-60.88680
1215.082.61×10-60.8672.24.91×10-60.89917
2415.041.98×10-60.8766.43.68×10-60.89558
4815.039.03×10-70.9959.52.99×10-60.712180
表1  不同时间的电化学阻抗谱拟合参数
1 Wang Y J. Study on the corrosion and protective measures of metal materials [J]. Construct. Mater. Decorat., 2018, (24): 161
1 王亚健. 金属材料的腐蚀与防护措施研究 [J]. 建材与装饰, 2018, (24): 161
2 Zheng J S, Huang K Y. Review and prospect of corrosion inhilitor development [J]. Mater. Prot., 2000, 33(5): 11
2 郑家燊, 黄魁元. 缓蚀剂科技发展历程的回顾与展望 [J]. 材料保护, 2000, 33(5): 11
3 Xu B Z, Xu Q, Zheng X H, et al. Research progress of protective materials on metal surface [J]. Mater. Rep., 2017, 31(S2): 296
3 徐秉政, 徐强, 郑晓华 等. 金属表层防护材料研究进展 [J]. 材料导报, 2017, 31(S2): 296
4 Tang R M, Liu G M, Shi C, et al. Inhibition and adsorption behavior of sodium dodecyl-benzene sulfonate on Q235 steel in simulated concrete pore fluid [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 857
4 唐荣茂, 刘光明, 师超 等. 十二烷基苯磺酸钠在模拟混凝土孔隙液中对Q235钢缓蚀及吸附行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 857
5 Du M L, Guo B C, Jia D M. Newly emerging applications of halloysite nanotubes: a review [J]. Polym. Int., 2010, 59: 574
doi: 10.1002/pi.2754
6 Zhong B C, Jia Z X, Luo Y F, et al. Preparation of halloysite nanotubes supported 2-mercaptobenzimidazole and its application in natural rubber [J]. Composites, 2015, 73A: 63
7 Ha S N, Lee H C. Cosmetic composition for preventing the skin aging and whitening the skin, containing natural mixture having plentiful inorganic substances including selenium [R]. Korea Research Institute of Chemical Technology, 2003
8 Shchukin D G, Lamaka S V, Yasakau K A, et al. Active anticorrosion coatings with halloysite nanocontainers [J]. J. Phys. Chem., 2008, 112C: 958
9 Wang Q. Preparation and characterization of the halloysite- corrosion inhibitor carrier materials [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016
9 王绮. 埃洛石-缓蚀剂担载材料的制备及其性能研究 [D]. 南京: 南京航空航天大学, 2016
10 Chen Z H, Liang J N. Preparation of waterborne intelligent anticorrosive coating materials with corrosion-inhibitor-loaded silica microcapsules and study on properties of the coatings obtained therefrom [J]. Electroplat. Finish., 2018, 37: 231
10 陈中华, 梁家妮. 以负载缓蚀剂的二氧化硅微胶囊制备水性智能防腐涂料及其涂层性能研究 [J]. 电镀与涂饰, 2018, 37: 231
11 Yu D. Preparation and controlled release behavior of HNTs-corrosion inhibitor/antifouling agent composites [D]. Tianjin: Tianjin University, 2017
11 郁丹. 埃洛石/缓蚀 (防污) 剂复合材料的制备与控释性能研究 [D]. 天津: 天津大学, 2017
12 Bhanvase B A, Patel M A, Sonawane S H. Kinetic properties of layer-by-layer assembled cerium zinc molybdate nanocontainers during corrosion inhibition [J]. Corros. Sci., 2014, 88: 170
doi: 10.1016/j.corsci.2014.07.022
13 Kartsonakis I A, Kordas G. Synthesis and characterization of cerium molybdate nanocontainers and their inhibitor complexes [J]. J. Am. Ceram. Soc., 2010, 93: 65
doi: 10.1111/j.1551-2916.2009.03310.x
14 Falcón J M, Batista F F, Aoki I V. Encapsulation of dodecylamine corrosion inhibitor on silica nanoparticles [J]. Electrochim. Acta, 2014, 124: 109
doi: 10.1016/j.electacta.2013.06.114
15 Tan B C, Zhang S T, Li W P, et al. Food spices 2,5-dihydroxy-1,4-dithiane as an eco-friendly corrosion inhibitor for X70 steel in 0.5 mol/L H2SO4 solution [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 469
15 谭伯川, 张胜涛, 李文坡 等. 食用香料1,4-二硫-2,5-二醇环保型缓蚀剂对X70钢在0.5 mol/L H2SO4溶液中的缓蚀性能研究 [J]. 中国腐蚀与防护学报, 2021, 41: 469
16 Feng Y C, Cheng Y F. An intelligent coating doped with inhibitor-encapsulated nanocontainers for corrosion protection of pipeline steel [J]. Chem. Eng. J., 2017, 315: 537
doi: 10.1016/j.cej.2017.01.064
17 Ramya K, Mohan R, Joseph A. Interaction of benzimidazoles and benzotriazole: its corrosion protection properties on mild steel in hydrochloric acid [J]. J. Mater. Eng. Perform., 2014, 23: 4089
doi: 10.1007/s11665-014-1183-5
[1] 刘玲, 邵紫雅, 贾天越, 刘国强, 雷冰, 孟国哲. 埃洛石纳米管负载改性及其在智能防腐涂层中的应用研究进展[J]. 中国腐蚀与防护学报, 2022, 42(4): 523-530.
[2] 陈佳起, 侯道林, 肖晗, 高雨薇, 董社英. 酸性介质中桂圆壳碳点对碳钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 629-637.
[3] 杨欣宇, 杨云天, 卢小鹏, 张涛, 王福会. 镁合金缓蚀剂研究进展[J]. 中国腐蚀与防护学报, 2022, 42(3): 435-440.
[4] 王晶, 王斯琰, 张崇, 王文涛, 曹星, 樊宁, 徐宏妍. 氮掺杂对碳纳米颗粒缓蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(1): 85-92.
[5] 王丽姿, 黄苗, 李向红. 核桃青皮提取物与碘化钾对钢在柠檬酸中的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2021, 41(6): 819-827.
[6] 胡慧慧, 陈长风. 温度影响席夫碱缓蚀剂吸附的机理研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 786-794.
[7] 王鼎立, 李勇明, 蒋立明, 陈波, 骆昂. 新型表面活性剂作为油气田酸化缓蚀剂的制备及其性能研究[J]. 中国腐蚀与防护学报, 2021, 41(4): 542-548.
[8] 周浩, 王胜利, 刘雪峰, 尤世界. 新型复合缓蚀剂对青铜文物的防腐蚀研究[J]. 中国腐蚀与防护学报, 2021, 41(4): 517-522.
[9] 谭伯川, 张胜涛, 李文坡, 向斌, 强玉杰. 食用香料1,4-二硫-2,5-二醇环保型缓蚀剂对X70钢在0.5 mol/L H2SO4溶液中的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(4): 469-476.
[10] 王亚婷, 王棵旭, 高鹏翔, 刘冉, 赵地顺, 翟建华, 屈冠伟. 淀粉接枝共聚物对Zn的缓蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[11] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[12] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[13] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[14] 邵明鲁, 刘德新, 朱彤宇, 廖碧朝. 乌洛托品季铵盐缓蚀剂的合成与复配研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[15] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.