Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (3): 369-377    DOI: 10.11902/1005.4537.2021.162
  中国腐蚀与防护学会杰出青年学术成就奖论文专栏 本期目录 | 过刊浏览 |
湿气环境中抗硫钢的元素硫腐蚀特征及腐蚀机理
刘毅超1, 钟显康1,2(), 扈俊颖1
1.西南石油大学石油与天然气工程学院 成都 610500
2.油气藏地质及开发工程国家重点实验室 (西南石油大学) 成都 610500
Characteristics and Mechanisms of Elemental Sulfur Induced Corrosion of Sulfur-resistant Steels in Wet Flow CO2 Environment
LIU Yichao1, ZHONG Xiankang1,2(), HU Junying1
1.School of Oil and Natural Gas Engineering, Southwest Petroleum University, Chengdu 610500, China
2.State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu 610500, China
全文: PDF(6930 KB)   HTML
摘要: 

探究了CO2湿气环境中P110SS抗硫钢在不同温湿度下的S腐蚀特征及腐蚀机理。采用X射线光电子能谱 (XPS) 和扫描电子显微镜 (SEM),对P110SS钢表面腐蚀产物膜的化学组成、微观形貌及厚度及去除腐蚀产物后基体的微观形貌进行了表征。结果表明:在60 ℃、相对湿度为30%的条件下,S不会参与腐蚀反应,但腐蚀环境中的Cl-和CO2会导致抗硫钢发生局部腐蚀;当相对湿度升高至60%和90%时,S参与了腐蚀的阴极反应,生成FeS,并导致抗硫钢发生全面腐蚀。在80 ℃、相对湿度为30%的条件下,S也参与腐蚀的阴极反应,并导致抗硫钢发生了局部腐蚀;当相对湿度为60%和90%时,S会发生水解反应,产生H2S和H2SO4,使抗硫钢发生严重的全面腐蚀。另外,腐蚀产物膜的厚度随湿度的升高而增加,致密度随反应温度的升高而降低。研究结果能为抗硫钢的S腐蚀控制提供参考。

关键词 湿气环境S腐蚀P110SS腐蚀特征腐蚀机理    
Abstract

The characteristics and mechanisms of elemental sulfur induced corrosion of P110SS sulfur-resistant steel in wet flow carbon dioxide atmosphere of various flux and relative humidity at different temperatures were investigated by means of X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), in terms of the composition and morphology of the corrosion product and the substrate steel. The results show that the elemental sulfur does not corrode P110SS at 60 ℃ in the wet flow CO2 with 30% relative humidity, however when the relative humidity reaches to 60% or higher, the elemental sulfur may participate in the cathodic reaction to generate S2-, which in turn combines with Fe2+ to produce FeS. As the temperature reaches to 80 ℃, the elemental sulfur becomes more active and may react with the steel to form FeS even in the flow CO2 with 30% relative humidity. When the relative humidity reaches to 60% or higher at 80 ℃, the elemental sulfur starts to hydrolyze, generating H2SO4 and H2S, which aggravates the corrosion of the steel. Furthermore, when the CO2 flux with high humidity at high temperature, FeS will also catalyze the hydrolysis of the elemental sulfur to form more SO42- and S2-. Finally, the thickness of the corrosion product increases with the increasing humidity and the density of the corrosion product decreases with the increasing temperature. Therefore, the findings of this study can provide a reference for the prevention and control of the elemental sulfur corrosion of sulfur-resistant steels.

Key wordshumid environment    elemental sulfur corrosion    P110SS sulfur-resistant steel    corrosion characteristics    corrosion mechanisms
收稿日期: 2021-07-13     
ZTFLH:  TG172  
基金资助:国家自然科学基金(52171080);西南石油大学青年科技创新团队项目(2018CXTD01)
通讯作者: 钟显康     E-mail: zhongxk@yeah.net
Corresponding author: ZHONG Xiankang     E-mail: zhongxk@yeah.net
作者简介: 刘毅超,男,1996年生,硕士生

引用本文:

刘毅超, 钟显康, 扈俊颖. 湿气环境中抗硫钢的元素硫腐蚀特征及腐蚀机理[J]. 中国腐蚀与防护学报, 2022, 42(3): 369-377.
Yichao LIU, Xiankang ZHONG, Junying HU. Characteristics and Mechanisms of Elemental Sulfur Induced Corrosion of Sulfur-resistant Steels in Wet Flow CO2 Environment. Journal of Chinese Society for Corrosion and protection, 2022, 42(3): 369-377.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.162      或      https://www.jcscp.org/CN/Y2022/V42/I3/369

图1  P110SS钢的金相组织
图2  实验装置示意图
Temperature of reaction bottle / ℃CO2 flux mL·min-1H2O temperature of humidity making bottle / ℃Relative humidity of reaction bottle / %
60202530 (±5)
404560 (±5)
607090 (±5)
80302530 (±5)
605060 (±5)
607090 (±5)
表1  反应瓶内的相对湿度
图3  60 ℃、不同相对湿度下S (2p3/2)、Fe (2p3/2) 和Mo (3d3/2) 的XPS高分辨谱
Temperature ℃

Relative

humidity / %

Spectra

Position

eV

Component

Peak

area / %

Temperature ℃

Relative

humidity / %

Spectra

Position

eV

Component

Peak

area / %

6030S 2p3/2163.6S81008030S 2p3/2163.6S858.96
Fe 2p3/2711.5FeOOH68.51161.4FeS41.04
710.7Fe3O49.40Fe 2p3/2712.1FeS18.29
710.2FeCO322.09711.1Fe2O353.82
60S 2p3/2164.8S25.66710.2FeCO327.89
163.6S861.2260S 2p3/2167.5Na2SO430.64
161.4FeS13.12164.8S18.19
Fe 2p3/2712.1FeS35.58163.6S849.02
710.7Fe3O427.24161.4FeS2.15
710.2FeCO327.49Fe 2p3/2712.1FeS18.21
709.9Fe2O39.70711.1Fe2O315.57
90S 2p3/2163.6S833.06710.2FeCO366.22
162.2MoS213.8490S 2p3/2168.6FeSO414.61
161.4FeS53.10163.5MoS260.69
Fe 2p3/2712.1FeS18.41162.0FeS214.08
710.2FeCO36.52161.4FeS10.62
709.9Fe2O375.07Fe 2p3/2713.6FeSO410.88
Mo 3d3/2235.08MoOx30.00711.1Fe2O381.85
232.3MoS230.00710.2FeCO33.31
231.7MoO340.00706.8FeS23.96
Mo 3d3/2235.6MoOx65.00
232.3MoS235.00
表2  不同温湿度下各物质峰面积比
图4  80 ℃、不同相对湿度下S (2p3/2)、Fe (2p3/2) 和Mo (3d3/2) 的XPS高分辨谱
图5  不同温湿度下覆盖S的P110SS钢表面腐蚀产物形貌
图6  不同温湿度下覆盖S的P110SS钢腐蚀截面SEM图
图7  不同温湿度下覆盖S的P110SS钢表面去膜后形貌
图8  30%RH/60 ℃条件下覆盖物不含S时的P110SS钢表面去膜后形貌
1 Mao T. Research on elemental sulfur corrosion and control technology in high sulfur gas fields [D]. Chengdu: Southwest Petroleum University, 2017
1 毛汀. 高含硫气田元素硫腐蚀及控制技术研究 [D]. 成都: 西南石油大学, 2017
2 Ge P L, Zeng W G, Xiao W W, et al. Effect of applied stress and medium flow on corrosion behavior of carbon steel in H2S/CO2 coexisting environment [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 271
2 葛鹏莉, 曾文广, 肖雯雯等. H2S/CO2共存环境中施加应力与介质流动对碳钢腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 271
3 Santos J P L, Lobato A K C L, Moraes C, et al. Determination of elemental sulfur deposition rates for different natural gas compositions [J]. J. Petroleum Sci. Eng., 2015, 135: 461
4 Li J L, Zhu S D, Qu C T, et al. Research progress on corrosion of elemental sulfur [J]. Hot Work. Technol., 2015, 44(2): 20
4 李金灵, 朱世东, 屈撑囤等. 元素硫腐蚀研究进展 [J]. 热加工工艺, 2015, 44(2): 20
5 MacDonald D D, Roberts B, Hyne J B. The corrosion of carbon steel by wet elemental sulphur [J]. Corros. Sci., 1978, 18: 411
6 Maldonado-Zagal S B, Boden P J. Hydrolysis of elemental sulphur in water and its effect on the corrosion of mild steel [J]. Br. Corros. J., 1982, 17: 116
7 Schmitt G. Effect of elemental sulfur on corrosion in sour gas systems [J]. Corrosion, 1991, 47: 285
8 Wilken G. Effect of environmental factors on downhole sour gas corrosion [A], Corrosion 96 [C]. Denver, Colorado: NACE International, 1996
9 Zhang L, Wang X, Wen Z, et al. Interactive effects of H2S and elemental sulfur on corrosion of steel [C]. Corrosion, 2012. OnePetro, 2012
10 Gee R, Chen Z Y. Hydrogen embrittlement during the corrosion of steel by wet elemental sulphur [J]. Corros. Sci., 1995, 37: 2003
11 Yang J Q, Zhang Z H, Zhang C X, et al. Selection and evaluation of low alloy steel for sour service [J]. Chem. Eng. Oil Gas, 2014, 43: 275
11 杨建强, 张忠铧, 张春霞等. 低合金钢抗硫油套管选材与评价方法 [J]. 石油与天然气化工, 2014, 43: 275
12 Zhang N Y, Zeng D Z, Zhang Z, et al. Effect of flow velocity on pipeline steel corrosion behaviour in H2S/CO2 environment with sulphur deposition [J]. Corros. Eng. Sci. Technol., 2018, 53: 370
13 National Standardization Management Committee. Petroleum and natural gas industries—Material for use in H2S-containing environments in oil and gas production—Part 3: Cracking-resistant CRAs (corrosion-resistant alloys) and other alloys [S]. Beijing: China Standards Press, 2009
13 国家标准化管理委员会. 石油天然气工业 油气开采中用于含硫化氢环境的材料 第3部分: 抗开裂耐蚀合金和其他合金 [S]. 北京: 中国标准出版社, 2009
14 Thomas J M, Adams I, Williams R H, et al. Valence band structures and core-electron energy levels in the monochalcogenides of gallium. Photoelectron spectroscopic study [J]. J. Chem. Soc. Farad. Trans., 1972, 68: 755
15 Peisert H, Chassé T, Streubel P, et al. Relaxation energies in XPS and XAES of solid sulfur compounds [J]. J. Electr. Spectrosc. Relat. Phenom., 1994, 68: 321
16 Patterson T A, Carver J C, Leyden D E, et al. A surface study of cobalt-molybdena-alumina catalysts using x-ray photoelectron spectroscopy [J]. J. Phys. Chem., 1976, 80: 1700
17 Alt H, Binder H, Sandstede G. Mechanism of the electrocatalytic reduction of oxygen on metal chelates [J]. J. Catal., 1973, 28: 8
18 Tan B J, Klabunde K J, Sherwood P M A. X-ray photoelectron spectroscopy studies of solvated metal atom dispersed catalysts. Monometallic iron and bimetallic iron-cobalt particles on alumina [J]. Chem. Mater., 1990, 2: 186
19 Marcus P, Grimal J M. The anodic dissolution and passivation of NiCrFe alloys studied by ESCA [J]. Corros. Sci., 1992, 33: 805
20 Li D G, Feng Y R, Bai Z Q, et al. Characteristics of CO2 corrosion scale formed on N80 steel in stratum water with saturated CO2 [J]. Appl. Surf. Sci., 2007, 253: 8371
21 Paparazzo E. XPS and auger spectroscopy studies on mixtures of the oxides SiO2, Al2O3, Fe2O3 and Cr2O3 [J]. J. Electr. Spectrosc. Relat. Phenom., 1987, 43: 97
22 Anwar M, Hogarth C A, Bulpett R. Effect of substrate temperature and film thickness on the surface structure of some thin amorphous films of MoO3 studied by X-ray photoelectron spectroscopy (ESCA) [J]. J. Mater. Sci., 1989, 24: 3087
23 Zhuang S X, Hall W K, Ertl G, et al. X-ray photoemission study of oxygen and nitric oxide adsorption on MoS2 [J]. J. Catal., 1986, 100: 167
24 Cáceres C V, Fierro J L G, Lázaro J, et al. Effect of support on the surface characteristics of supported molybdena catalysts [J]. J. Catal., 1990, 122: 113
25 Bai H T, Yang M, Dong X W, et al. Research progress on CO2 corrosion product scales of carbon steels [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 295
25 白海涛, 杨敏, 董小卫等. CO2腐蚀产物膜的研究进展 [J]. 中国腐蚀与防护学报, 2020, 40: 295
26 Kruizenga A M. Corrosion mechanisms in chloride and carbonate salts [R]. Livermore: Sandia National Laboratories, 2012
27 Zheng S Q, Li C Y, Qi Y M, et al. Mechanism of (Mg, Al, Ca)-oxide inclusion-induced pitting corrosion in 316L stainless steel exposed to sulphur environments containing chloride ion [J]. Corros. Sci., 2013, 67: 20
28 Lindberg B J, Hamrin K, Johansson G, et al. Molecular spectroscopy by means of ESCA II. Sulfur compounds. Correlation of electron binding energy with structure [J]. Phys. Scr., 1970, 1: 286
29 Swartz W E, Hercules D M. X-ray photoelectron spectroscopy of quaternary phosphonium compounds [J]. Anal. Chem., 1971, 43: 1066
30 Durbin T D, Lince J R, Didziulis S V, et al. Soft X-ray photoelectron spectroscopy study of the interaction of Cr with MoS2(0001) [J]. Surf. Sci., 1994, 302: 314
31 Karthe S, Szargan R, Suoninen E. Oxidation of pyrite surfaces: A photoelectron spectroscopic study [J]. Appl. Surf. Sci., 1993, 72: 157
32 Goonasekere K G A. A case study of irrigation water management at Kaudulla irrigation scheme and development of water management alternatives for the dry zone of Sri Lanka [D]. Blacksburg: Virginia Polytechnic Institute and State University, 1985
33 Seyama H, Soma M. Fe 2p spectra of silicate minerals [J]. J. Electr. Spectrosc. Relat. Phenom., 1987, 42: 97
34 Chen T H, Xu L N, Chang W, et al. Influence of Cr contents and temperatures on the CO2 corrosion resistance of low Cr bearing linepipe steel [J]. Nat. Gas Ind., 2011, 31(9): 93
34 陈太辉, 许立宁, 常炜等. Cr含量和温度对低Cr管线钢抗CO2腐蚀的影响 [J]. 天然气工业, 2011, 31(9): 93
35 Lin H C, Lv M, Yang X Q, et al. Potential phase changes during extraction of very high H2S-bearing gas wells [J]. Corros. Sci. Prot. Technol., 1992, 4: 308
35 林海潮, 吕明, 杨秀清等. 特高含H2S气井开采过程中可能发生的相态变化及其影响 [J]. 腐蚀科学与防护技术, 1992, 4: 308
36 Deng T, Ke J J, Chen J Y. Kinetics of disproportionation of elemental sulfur in aqueous solutions [J]. J. Chem. Ind. Eng. (China), 1984, 4: 328
36 邓彤, 柯家骏, 陈家镛. 元素硫的歧化反应动力学研究 [J]. 化工学报, 1984, 4: 328
37 Yang L Q. The study of the elemental sulfur corrosion mechanism of X65 pipeline steel under the suspended sulfur environment [D]. Xi'an: Northwest University, 2017
[1] 崔中雨, 葛峰, 王昕. 几种苛刻海洋大气环境下的海工材料腐蚀机制[J]. 中国腐蚀与防护学报, 2022, 42(3): 403-409.
[2] 张建, 黄金, 许家鹏, 罗国强, 沈强. 金属Mo在500 ℃ LiF-LiCl-LiBr-Li熔盐中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 67-72.
[3] 李承媛, 陈旭, 何川, 李鸿瑾, 潘鑫. 埋地金属管道交流电腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(2): 139-150.
[4] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[5] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[6] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[7] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[8] 梁毅, 杜艳霞. 交流干扰和阴极保护协同作用下的腐蚀评判标准与机理研究进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[9] 王希靖, 王博士, 杨超, 杨艳, 沈斌. 纯Ni母材及焊缝在熔融Na2SO4-K2SO4中热腐蚀研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 495-501.
[10] 夏大海, 宋诗哲, 王吉会, 高志明, 胡文彬. 食品包装用镀锡薄钢板的腐蚀机理研究进展[J]. 中国腐蚀与防护学报, 2017, 37(6): 513-518.
[11] 李琰,鲁金涛,杨珍,朱明,谷月峰. 烟气S含量对700 ℃超超临界锅炉候选合金腐蚀行为影响[J]. 中国腐蚀与防护学报, 2016, 36(5): 505-512.
[12] 孙冲, 王勇, 孙建波, 蒋涛, 赵卫民, 张彦春. 含杂质超临界CO2输送管线腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2015, 35(5): 379-385.
[13] 王凤平,刘岚,丁言伟,胡隋军,刘照斌,刘丹,张丽. 油气田H2S腐蚀体系模拟方法探究[J]. 中国腐蚀与防护学报, 2015, 35(3): 251-256.
[14] 周京, 冯芝勇, 张金玲, 王社斌. 稀土Nd含量对AM60镁合金耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2014, 34(2): 185-191.
[15] 常新龙, 刘万雷, 赖建伟, 张晓军. LD10铝合金应力腐蚀性能的研究[J]. 中国腐蚀与防护学报, 2013, 33(4): 347-350.