Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (1): 149-155    DOI: 10.11902/1005.4537.2020.251
  研究报告 本期目录 | 过刊浏览 |
A572Gr.65钢在不同土壤模拟液中的腐蚀动力学
丁聪, 张金玲(), 于彦冲, 李烨磊, 王社斌
太原理工大学材料科学与工程学院 太原 030024
Corrosion Kinetics of A572Gr.65 Steel in Different Simulated Soil Solutions
DING Cong, ZHANG Jinling(), YU Yanchong, LI Yelei, WANG Shebin
College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
全文: PDF(5109 KB)   HTML
摘要: 

采用电化学工作站、SEM、XRD等技术研究了A572Gr.65钢在pH4~10之间的土壤模拟液中的腐蚀行为,探讨了酸性和碱性溶液对A572Gr.65钢耐蚀性能的影响。结果表明:随着pH增大,A572Gr.65钢的极化电阻随之增加,且自腐蚀电位正移,自腐蚀电流密度减小,在碱性溶液中A572Gr.65钢表现出最佳的耐蚀性能。当溶液为酸性时,腐蚀产物主要为γ-FeOOH。高浓度的H+会促进感抗弧的产生,使A572Gr.65钢表面的钝化膜遭到破坏,并且H+在反应过程中会生成氢气,造成腐蚀产物的疏松,在此过程中阴极的析氢反应为整个过程的限制性环节;当pH为中性或碱性时,OH-会促进γ-FeOOH向更加致密的Fe3O4α-FeOOH转化,致密的腐蚀产物会阻碍侵蚀性离子和溶解氧的扩散,从而保护基体。此时金属表面腐蚀活性点的形成以及阳极的溶解速度为整个过程的限制性环节。

关键词 A572Gr.65钢极化曲线阻抗谱pH腐蚀动力学土壤腐蚀    
Abstract

The corrosion behavior of A572Gr.65 steel in various artificial soil solutions was studied by means of electrochemical workstation, scanning electron microscopy (SEM), X-ray diffractometer (XRD) and other techniques. The results show that with the increase of pH value, the polarization resistance of A572Gr.65 steel also increases, meanwhile the free-corrosion potential of A572Gr.65 steel moves positively, while the free-corrosion current density decreases. The corrosion resistance of steel in alkaline solution is the best. When the solution is acidic, the main corrosion product is γ-FeOOH. High concentration of H+ can promote the generation of impedance arc and destroy the passive film on the surface of A572Gr.65 steel. In addition, H+ will generate hydrogen in the reaction process, make corrosion products loose, and accelerate the corrosion process. In this process, the hydrogen evolution reaction of cathode is the controlling step for the whole process. When the pH value becomes neutral or alkaline gradually, OH- will promote the transformation of γ-FeOOH to dense Fe3O4 and α-FeOOH. The dense corrosion products will hinder the diffusion of corrosive ions and dissolved oxygen, protect the substrate effectively and slow down the progress of corrosion. In this process, the formation of corrosion active points on the metal surface and the dissolution rate of anode are the controlling step for the whole process.

Key wordsA572Gr.65 steel    polarization curve    electrochemistry impedance spectroscopy    pH value    corrosion kinetics    soil corrosion
收稿日期: 2020-12-02     
ZTFLH:  TG174.3  
基金资助:国家自然科学基金(52004180);山西省面上青年基金(201801D221138)
通讯作者: 张金玲     E-mail: zhjlty@163.com
Corresponding author: ZHANG Jinling     E-mail: zhjlty@163.com
作者简介: 丁聪,男,1995年生,硕士生

引用本文:

丁聪, 张金玲, 于彦冲, 李烨磊, 王社斌. A572Gr.65钢在不同土壤模拟液中的腐蚀动力学[J]. 中国腐蚀与防护学报, 2022, 42(1): 149-155.
Cong DING, Jinling ZHANG, Yanchong YU, Yelei LI, Shebin WANG. Corrosion Kinetics of A572Gr.65 Steel in Different Simulated Soil Solutions. Journal of Chinese Society for Corrosion and protection, 2022, 42(1): 149-155.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.251      或      https://www.jcscp.org/CN/Y2022/V42/I1/149

图1  A572Gr.65钢在不同pH值的土壤模拟液中的极化曲线
pHEcorr / VIcorr / A·cm-2
4-0.8333.15×10-4
6-0.7074.26×10-5
7-0.3421.05×10-6
8-0.3401.69×10-6
10-0.3024.21×10-7
表1  A572Gr.65钢在不同pH土壤模拟液中极化曲线的拟合结果
图2  A572Gr.65钢在不同pH土壤模拟液中的阻抗谱
图3  A572Gr.65钢在不同pH土壤模拟液中的拟合电路
pHRsΩ·cm2CPE-TCPE-PRpΩ·cm2L1R1Ω·cm2
4214.12.64×10-40.6943201.352.6291.6
6470.55.18×10-40.77131966------
7465.91.34×10-40.75453743------
8355.21.01×10-40.78833769------
10359.32.57×10-50.8801140250------
表2  A572Gr.65钢在土壤模拟液中EIS拟合结果
图4  A572Gr.65钢在不同pH土壤模拟液中Bode曲线
图5  A572Gr.65钢在不同pH的土壤模拟液中腐蚀产物的XRD谱
图6  A572Gr.65钢在不同pH的土壤模拟液中电化学腐蚀形貌图
图7  A572Gr.65钢在土壤模拟液中腐蚀机理图
1 Guo H F, Zhang Z K, Zhang Z W. Analysis of the causes of bending cracking of A572Gr50 steel [J]. Tianjin Metall., 2019, (5): 49
1 郭海峰, 张志克, 张植伟. A572Gr50钢折弯开裂原因分析 [J]. 天津冶金, 2019, (5): 49
2 Zhu Y C, Liu G M, Liu X, et al. Investigation on interrelation of field corrosion test and accelerated corrosion test of grounding materials in red soil environment [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 550
2 朱亦晨, 刘光明, 刘欣等. 红壤地区接地材料现场埋样与加速腐蚀实验的相关性研究 [J]. 中国腐蚀与防护学报, 2019, 39: 550
3 Tang R M, Zhu Y C, Liu G M, et al. Gray correlative degree analysis of Q235 steel/conductive concrete corrosion in three typical soil environments [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 110
3 唐荣茂, 朱亦晨, 刘光明等. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析 [J]. 中国腐蚀与防护学报, 2021, 41: 110
4 Xu C M, Yang D P, Zhang L Z, et al. Effect of SRB on corrosion behavior of X100 steel in simulated solution of Yingtan soil [J]. J. Mater. Eng., 2015, 43(6): 71
4 胥聪敏, 杨东平, 张灵芝等. SRB对X100钢在鹰潭土壤模拟溶液中腐蚀行为的影响 [J]. 材料工程, 2015, 43(6): 71
5 Zhang X M, Zhang J L, Yu Y C, et al. Effect of deposition time on corrosion resistance of Al-coated AZ31 magnesium alloy [J]. Surf. Technol., 2019, 48(10): 251
5 张晓敏, 张金玲, 于彦冲等. 沉积时间对镀铝层AZ31镁合金耐蚀性的影响 [J]. 表面技术, 2019, 48(10): 251
6 Wang S X, Yin X L, Zhang H, et al. Coupling effects of pH and dissolved oxygen on the corrosion behavior and mechanism of X80 steel in acidic soil simulated solution [J]. Materials, 2019, 12: 3175
7 Dai Y, Zhang J L, Yu Y C, et al. Influence of rare earth on electrochemical corrosion behavior of A572 Gr.65 steel [J]. Surf. Technol., 2020, 49(8): 217
7 戴玥, 张金玲, 于彦冲等. 稀土对A572 Gr.65钢电化学腐蚀行为的影响 [J]. 表面技术, 2020, 49(8): 217
8 Zhang Q L, Xue M H, Wang D, et al. Effect of CO32- concentration on the corrosion behavior of X80 pipeline steel in simulated soil Solution [J]. Int. J. Electrochem. Sci., 2020, 15: 4592
9 Wang F, Huang T, Chen X P, et al. Corrosion behavior of X65 pipeline steel in simulated soil [J]. Corros. Prot., 2017, 38: 331
9 王帆, 黄涛, 陈小平等. X65管线钢在模拟土壤中的腐蚀行为 [J]. 腐蚀与防护, 2017, 38: 331
10 Zhao T L, Lu W, Lv H W, et al. Electrochemical corrosion behavior of 10# carbon steel in NaOH solution [J]. Corros. Prot., 2018, 39: 833
10 赵天雷, 路伟, 吕海武等. 10号碳钢在NaOH溶液中的腐蚀电化学行为 [J]. 腐蚀与防护, 2018, 39: 833
11 Zhang L, Du C W, Li X G. Effects of temperature, oxygen concentration and pH value on electrochemical behavior of X70 pipeline steel [J]. Heat Treat. Met., 2008, 33(11): 36
11 张亮, 杜翠薇, 李晓刚. 温度、pH值和氧浓度对X70管线钢电化学行为的影响 [J]. 金属热处理, 2008, 33(11): 36
12 Li X J, Gui F, Cong H B, et al. Evaluation of nitrate and nitrite reduction kinetics related to liquid-air-interface corrosion [J]. Electrochim. Acta, 2014, 117: 299
13 Zhou Y, Zhang P, Huang H J, et al. The effects of pH values on functional mechanisms of nitrite anions for Q235 carbon steels in 0.01 mol·L-1 NaNO2-HCl solutions [J]. J. Braz. Chem. Soc., 2019, 30: 1688
14 Zhou Y, Zuo Y. The passivation behavior of mild steel in CO2 saturated solution containing nitrite anions [J]. J. Electrochem. Soc., 2015, 162: C47
15 Wang Y F, Cheng G X, Wu W, et al. Effect of pH and chloride on the micro-mechanism of pitting corrosion for high strength pipeline steel in aerated NaCl solutions [J]. Appl. Surf. Sci., 2015, 349: 746
16 Mu L J, Zhang J, Zhao W Z, et al. Corrosion behavior of J55 steel in NaHCO3 solution [J]. Mater. Mech. Eng., 2010, 34(8): 15
16 慕立俊, 张军, 赵文轸等. J55钢在NaHCO3溶液中的腐蚀行为 [J]. 机械工程材料, 2010, 34(8): 15
17 Keddam M, Kuntz C, Takenouti H, et al. Exfoliation corrosion of aluminum alloys examined by electrode impedance [J]. Electrochim. Acta, 1997, 42: 87
18 Cao C N, Wang J, Lin H C. Effect of Cl- ion on the impedance of passive-film-covered electrodes [J]. J. Chin. Soc. Corros. Prot., 1989, 9: 261
18 曹楚南, 王佳, 林海潮. 氯离子对钝态金属电极阻抗频谱的影响 [J]. 中国腐蚀与防护学报, 1989, 9: 261
19 Guo H. Study on catalytic phase transformation mechanism of ferric hydroxide/oxohydroxides [D]. Shijiazhuang: Hebei Normal University, 2006
19 郭慧. 氢氧化铁和羟基氧化铁的催化相转化机理研究 [D]. 石家庄: 河北师范大学, 2006
20 Wan J J. Research on the corrosion behaviors and mechanism of A517Gr.Q steel in simulated seawater [D]. Xi'an: Xi'an University of Technology, 2017
20 万金剑. 高强钢A517Gr.Q在模拟海水中的腐蚀行为及机理研究 [D]. 西安: 西安理工大学, 2017
21 Garcia K E, Morales A L, Barrero C A, et al. New contributions to the understanding of rust layer formation in steels exposed to a total immersion test [J]. Corros. Sci., 2006, 48: 2813
22 Takemura M, Fujita S, Morita K, et al. Protectiveness of rust formed on weathering steel in atmosphere rich in air-born chloride particles [J]. Zairyo-to-Kankyo, 2000, 49: 72
23 Ishikawa T, Miyamoto S, Kandori K, et al. Influence of anions on the formation of β-FeOOH rusts [J]. Corros. Sci., 2005, 47: 2510
24 Kamimura T, Nasu S, Segi T, et al. Influence of cations and anions on the formation of β-FeOOH [J]. Corros. Sci., 2005, 47: 2531
25 Ramana K V S, Kaliappan S, Ramanathan N, et al. Characterization of rust phases formed on low carbon steel exposed to natural marine environment of Chennai harbour-South India [J]. Mater. Corros., 2007, 58: 873
26 Katayama H, Yamamoto M, Kodama T. Degradation behavior of protective rust layer in chloride solution [J]. Zairyo-to-Kankyo, 2000, 49: 41
[1] 苍雨, 黄毓晖, 翁硕, 轩福贞. 环境变量对核电汽轮机转子钢焊接接头电偶腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 318-326.
[2] 曹京宜, 方志刚, 李亮, 冯亚菲, 王兴奇, 寿海明, 杨延格, 褚广哲, 殷文昌. 国产镀锌钢在不同水环境中的腐蚀行为:I淡水和盐水[J]. 中国腐蚀与防护学报, 2021, 41(2): 169-177.
[3] 曹京宜, 方志刚, 冯亚菲, 李亮, 杨延格, 寿海明, 王兴奇, 臧勃林. 国产镀锌钢在不同水环境中的腐蚀行为:II反渗透水和调质水[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[4] 曹京宜, 杨延格, 方志刚, 寿海明, 李亮, 冯亚菲, 王兴奇, 褚广哲, 赵伊. 淡水舱涂层在不同水环境中的失效行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
[5] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[6] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[7] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[8] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[9] 李子运, 王贵, 罗思维, 邓培昌, 胡杰珍, 邓俊豪, 徐敬明. 热带海洋大气环境中EH36船板钢早期腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 463-468.
[10] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[11] 孙硕, 杨杰, 钱薪竹, 常人丽. Ni-Cr-P化学镀层的制备与电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[12] 朱亦晨,刘光明,刘欣,裴锋,田旭,师超. 红壤地区接地材料现场埋样与加速腐蚀实验的相关性研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 550-556.
[13] 朱泽洁,张勤号,刘盼,张鉴清,曹发和. 微型电化学传感器在界面微区pH值监测中的应用[J]. 中国腐蚀与防护学报, 2019, 39(5): 367-374.
[14] 邓俊豪,胡杰珍,邓培昌,王贵,吴敬权,王坤. 氧化皮对SPHC热轧钢板在热带海洋大气环境中初期腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 331-337.
[15] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.