Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (3): 283-288    DOI: 10.11902/1005.4537.2017.109
  研究报告 本期目录 | 过刊浏览 |
脉冲电流对1050铝合金微弧氧化过程的影响
杨钊, 时惠英(), 蒋百灵, 葛延峰, 张静, 张曼玉, 李研
西安理工大学材料科学与工程学院 西安 710048
Effect of Pulse Current on Micro-arc Oxidation Process for 1050 Al-alloy
Zhao YANG, Huiying SHI(), Bailing JIANG, Yanfeng GE, Jing ZHANG, Manyu ZHANG, Yan LI
Department of Material Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
全文: PDF(2000 KB)   HTML
摘要: 

为了探讨脉冲电流对1050铝合金微弧氧化过程的影响规律,利用涡流测厚仪和粗糙度仪分别测量陶瓷层厚度和表面粗糙度,采用SEM观察陶瓷层微观形貌,借助动电位极化曲线测试评价陶瓷层耐蚀性,并根据电压变化曲线计算微弧氧化过程能量消耗。结果表明:随着脉冲电流由100 A增加至800 A,微弧诱发时间由360 s缩短至15 s,诱发电压由341 V 升高至887 V;陶瓷层表面放电微孔孔径增大,微孔数量减少,陶瓷层厚度和表面粗糙度增加,耐蚀性略有下降;微弧诱发过程能量消耗先减少后增加,并在200 A时达到最小值仅为18.3 kJ;陶瓷层生长过程能量消耗随脉冲电流增大近似线性增加。

关键词 铝合金微弧氧化脉冲电流耐蚀性能量消耗    
Abstract

The effect of pulse current on micro-arc oxidation (MAO) process for 1050 Al-alloy was investigated. The thickness and roughness, surface morphology and corrosion performance of the prepared MAO coatings were assessed by means of eddy current thickness gauge and roughness tester, scanning electron microscope (SEM) and potentiodynamic polarization measurement respectively. The energy consumption of MAO process was calculated based on voltage versus time curves. Results indicate that with the increasing pulse current from 100 to 800 A, the arcing time shorten from 360 s to 15 s, while the arcing voltage rose from 341 V to 887 V. The diameter of micropores of the coatings was enlarged but the quantity reduced. While thicker and coarser ceramic coatings were obtained on the Al-alloy but with degraded corrosion resistance. The energy consumption of arcing process decreased at first then raised, and which presented the minimum value of 18.3 kJ for a pulse current of 200 A. The energy consumption of MAO coating process presented approximately a linear growth with the increasing pulse current density.

Key wordsAl-alloy    micro-arc oxidation    pulse current    corrosion resistance    energy consumption
收稿日期: 2017-07-05     
ZTFLH:  TG174.4  
基金资助:陕西省自然科学基金 (2018JQ5179)
作者简介:

作者简介 杨钊,男,1992年生,硕士生

引用本文:

杨钊, 时惠英, 蒋百灵, 葛延峰, 张静, 张曼玉, 李研. 脉冲电流对1050铝合金微弧氧化过程的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 283-288.
Zhao YANG, Huiying SHI, Bailing JIANG, Yanfeng GE, Jing ZHANG, Manyu ZHANG, Yan LI. Effect of Pulse Current on Micro-arc Oxidation Process for 1050 Al-alloy. Journal of Chinese Society for Corrosion and protection, 2018, 38(3): 283-288.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.109      或      https://www.jcscp.org/CN/Y2018/V38/I3/283

图1  电源输出参数示意图
图2  脉冲电流对铝合金微弧诱发时间和电压的影响
图3  脉冲电流对铝合金MAO过程中电压的影响
ip / A Thickness / μm Roughness / μm
100 1.8 0.44
200 3.7 0.56
300 4.1 0.73
400 4.4 0.97
600 7.6 1.28
800 8.5 1.42
表1  不同脉冲电流下铝合金MAO陶瓷层的厚度和粗糙度
图4  脉冲电流对铝合金MAO陶瓷层表面形貌的影响
图5  脉冲电流对铝合金MAO陶瓷层截面形貌的影响
图6  脉冲电流对铝合金MAO陶瓷层在3.5%NaCl溶液中动电位极化曲线的影响
ip / A ba / mv bc / mv Icorr / A·cm-2 Ecorr / V
Bare 5.1 2.9 1.37×10-6 -0.52
200 6.3 6.8 1.39×10-10 -0.42
400 6.5 7.0 1.22×10-10 -0.43
800 4.8 5.6 5.13×10-9 -0.44
表2  铝合金试样在3.5%NaCl溶液中动电位极化曲线计算结果
图7  脉冲电流对微弧诱发和陶瓷层生长过程能量消耗的影响
图8  脉冲电流对MAO陶瓷层生长单位厚度能量消耗的影响
[1] Lia H X, Rudnev V S, Zheng X H, et al.Characterization of Al2O3 ceramic coatings on 6063 aluminum alloy prepared in borate electrolytes by micro-arc oxidation[J]. J. Alloy. Compd., 2008, 462: 99
[2] Wang C J, Jiang B L, Liu M, et al.Corrosion characterization of micro-arc oxidization composite electrophoretic coating on AZ31B magnesium alloy[J]. J. Alloy. Compd., 2015, 621: 53
[3] Guo P Y, Wang X F, Shao Y.Formation mechanism and corrosion behavior of micro-arc oxidation ceramic layers on 1050 pure aluminum[J]. Corros. Sci. Prot. Technol., 2011, 23: 490(郭平义, 王晓璠, 邵勇. 1050纯铝微弧氧化陶瓷层的生长动力学与腐蚀性能研究[J]. 腐蚀科学与防护技术, 2011, 23: 490)
[4] Gupta P, Tenhundfeld G, Daigle E O, et al.Electrolytic plasma technology: Science and engineering?An overview[J]. Surf. Coat. Technol., 2007, 201: 8746
[5] Jaspard?Mécuson F, Czerwiec T, Henrion G, et al. Tailored aluminum oxide layers by bipolar current adjustment in the plasma electrolytic oxidation (PEO) process[J]. Surf. Coat. Technol., 2007, 201: 8677
[6] Jiang B L, Zhang X F.Growth process and corrosion resistance ofceramic coatings formed by micro-oxidation on magnesium alloy[J]. J. Chin. Soc. Corros. Prot., 2005, 25: 97(蒋百灵, 张先锋. 镁合金微弧氧化陶瓷层的生长过程及其耐蚀性[J]. 中国腐蚀与防护学报, 2005, 25: 97)
[7] Ge Y F, Jiang B L, Shi H Y.Effect of current pulse width on micro-arc oxidation process for aluminum alloy[J]. Trans. Mater. Heat Treat., 2013, 34: 165(葛延峰, 蒋百灵, 时惠英. 电流脉冲宽度对铝合金微弧氧化过程的影响[J]. 材料热处理学报, 2013, 34: 165)
[8] Jiang B L, Liu D J.Scientific aspects of restricting development and application of micro-arc oxidation technology[J]. Chin. J. Nonferrous Met., 2011, 21: 2402(蒋百灵, 刘东杰. 制约微弧氧化技术应用开发的几个科学问题[J]. 中国有色金属学报, 2011, 21: 2402)
[9] Yerokhin A L, Shatrov T A, Samsonov V, et al.Oxide ceramic coatings on aluminium alloys produced by a pulsed bipolar plasma electrolytic oxidation process[J]. Surf. Coat. Technol., 2005, 199: 150
[10] Liu R M, Guo F, Li P F.Effect of voltage on formation of ceramic coating prepared by micro-arc oxidation on aluminum alloy[J]. Trans. Mater. Heat Treat., 2008, 29: 137(刘荣明, 郭锋, 李鹏飞. 电压对铝合金微弧氧化陶瓷层形成的影响[J]. 材料热处理学报, 2008, 29: 137)
[11] Hou W A, Hu J H, Song X J.The influence of power supply modeon the process and performance of coating of micro-arc oxidation[J]. Nonferrous Met.(Extr. Metall.), 2007, (S1): 122(侯伟骜, 胡江辉, 宋希剑. 电源工作模式对微弧氧化过程和膜层性能的影响[J]. 有色金属 (冶炼部分), 2007, (S1): 122)
[12] Yerokhin A L, Snizhko L O, Gurevina N L, et al.Discharge characterization in plasma electrolytic oxidation of aluminium[J]. J. Phys. D: Appl. Phys., 2003, 3: 2110
[13] Cui X J, Wang R, Wei J S, et al.Effect of electrical parameters on micromorphology and corrosion resistance of micro-arc oxidation coating on AZ31B Mg alloy[J]. J. Chin. Soc. Corros. Prot., 2014,34: 495(崔学军, 王荣, 魏劲松等. 电参数对AZ31B 镁合金微弧氧化膜微观形貌及耐蚀性的影响[J]. 中国腐蚀与防护学报, 2014, 34: 495)
[14] Jiang B L, Zhang S F, Wu G J.Study of corrosion resistance on ceramic coatings formed by micro-arc oxidation on magnesium alloys[J]. J. Chin. Soc. Corros. Prot., 2002, 22: 300(蒋百灵, 张淑芬, 吴国建等. 镁合金微弧氧化陶瓷层耐蚀性的研究[J] .中国腐蚀与防护学报, 2002, 22: 300)
[15] Zhao J, Song R G, Li H X, et al.Effects of nano-additive on microstructure and properties of micro-arc oxidation coatings on 6063 aluminum alloy[J]. Trans. Mater. Heat Treat., 2010, 31: 125(赵坚, 宋仁国, 李红霞等. 纳米添加剂对6063铝合金微弧氧化层组织与性能的影响[J]. 材料热处理学报, 2010, 31: 125)
[16] Lv G H, Gu W C, Chen H, et al.Characteristics of ceramic coatings on aluminum formed by plasma electrolytic oxidation in silicate and phosphate electrolyte[J]. Appl. Surf. Sci., 2006, 253: 947
[1] 黄鹏, 高荣杰, 刘文斌, 尹续保. 盐溶液刻蚀-氟化处理制备X65管线钢镀镍超双疏表面及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[3] 魏征, 马保吉, 李龙, 刘潇枫, 李慧. 镁合金表面超声滚压预处理对微弧氧化膜耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[4] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[5] 包任, 周根树, 李宏伟. 恒电位脉冲电沉积高锡青铜耐蚀镀层工艺研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[6] 刘海霞, 黄峰, 袁玮, 胡骞, 刘静. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[7] 李聪玮, 杜双明, 曾志琳, 刘二勇, 王飞虎, 马付良. 电流密度对Ni-Co-B镀层微观结构及磨蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[8] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[9] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[10] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[11] 王乐,易丹青,刘会群,蒋龙,冯春. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[12] 武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[13] 姜冬雪,付颖,张峻巍,张伟,辛丽,朱圣龙,王福会. 钛合金表面Al2O3陶瓷膜制备及性能研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
[14] 孙晓光,韩晓辉,张星爽,张志毅,李刚卿,董超芳. 超低碳奥氏体不锈钢焊接接头耐腐蚀性及环保型化学钝化工艺研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[15] 任建平,宋仁国. 双级时效对7050铝合金力学性能及氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 359-366.