|
|
酸性土壤环境中Q235钢的微生物腐蚀行为 |
于利宝1,2, 闫茂成1( ), 王彬彬3, 舒韵1, 许进1, 孙成1 |
1 中国科学院金属研究所 沈阳 110016 2 中国科学院大学 北京 100049 3 中国石油西南管道公司 成都 610041 |
|
Microbial Corrosion of Q235 Steel in Acidic Red Soil Environment |
Libao YU1,2, Maocheng YAN1( ), Binbin WANG3, Yun SHU1, Jin XU1, Cheng SUN1 |
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 PetroChina West Pipeline Company, Chengdou 610041, China |
引用本文:
于利宝, 闫茂成, 王彬彬, 舒韵, 许进, 孙成. 酸性土壤环境中Q235钢的微生物腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 10-17.
Libao YU,
Maocheng YAN,
Binbin WANG,
Yun SHU,
Jin XU,
Cheng SUN.
Microbial Corrosion of Q235 Steel in Acidic Red Soil Environment. Journal of Chinese Society for Corrosion and protection, 2018, 38(1): 10-17.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2017.009
或
https://www.jcscp.org/CN/Y2018/V38/I1/10
|
[1] | Usher K M, Kaksonen A H, Cole I, et al.Critical review: Microbially influenced corrosion of buried carbon steel pipes[J]. Int. Biodeterior. Biodegrad., 2014, 93: 84 | [2] | Wolfram J H, Rogers R D, Gazso L G.Microbial degradation processes in radioactive waste repository and in nuclear fuel storage areas [A]. Proceedings of the NATO Advanced Research Workshop[C]. Budapest, Hungary, 1997: 37 | [3] | Von Wolzogen Kuehr C A H, Der Van Vlugt L S. Graphitization of cast iron as an electrobiochemical process in anaerobic soils [R]. Frederick Maryland: United States Army Biological Laboratories, 1964: 18 | [4] | Iversen A.Microbially influenced corrosion on stainless steel in waste water treatment plants: Part 2[J]. Br. Corros. J., 2013, 36: 284 | [5] | Dinh H T, Kuever J, Mu?mann M, et al.Iron corrosion by novel anaerobic microorganisms[J]. Nature, 2004, 427: 829 | [6] | Lovley D R, Phillips E J P. Competitive mechanisms for inhibition of sulfate reduction and methane production in the zone of ferric iron reduction in sediments[J]. Appl. Environ. Microbiol., 1987, 53: 2636 | [7] | Luu Y S, Ramsay J A.Review: Microbial mechanisms of accessing insoluble Fe(III) as an energy source[J]. World J. Microbiol. Biotechnol., 2003, 19: 215 | [8] | Yan M C, Sun C, Xu J, et al.Role of Fe oxides in corrosion of pipeline steel in a red clay soil[J]. Corros. Sci., 2014, 80: 309 | [9] | Yan M C, Sun C, Dong J H, et al.Electrochemical investigation on steel corrosion in iron-rich clay[J]. Corros. Sci., 2015, 97: 62 | [10] | Yan M C, Sun C, Xu J, et al.Anoxic corrosion behavior of pipeline steel in acidic soils[J]. Ind. Eng. Chem. Res., 2014, 53: 17615 | [11] | Cao C N.Material Natural Environment Corrosion in China [M]. Beijing: Chemical Industry Press, 2005(曹楚南. 中国材料的自然环境腐蚀 [M]. 北京: 化学工业出版社, 2005) | [12] | Wu T Q, Ding W C, Zeng D C, et al.Microbiologically induced corrosion of X80 pipeline steel in an acid soil solution: (I) Electrochemical analysis[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 346(吴堂清, 丁万成, 曾德春等. 酸性土壤浸出液中X80钢微生物腐蚀研究: (I)电化学分析[J]. 中国腐蚀与防护学报, 2014, 34: 346) | [13] | Webster B J, Newman R C.Producing rapid sulfate-reducing bacteria (SRB)-Influenced corrosion in the laboratory [R]. West Conshohocken, PA: ASTM International, 1994 | [14] | Yu L, Duan J Z, Zhao W, et al.Characteristics of hydrogen evolution and oxidation catalyzed by Desulfovibrio caledoniensis biofilm on pyrolytic graphite electrode[J]. Electrochim. Acta, 2011, 56: 9041 | [15] | Duan J Z, Wu S R, Zhang X J, et al.Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater[J]. Electrochim. Acta, 2008, 54: 22 | [16] | Rosborg B, Kosec T, Kranjc A, et al.Electrochemical impedance spectroscopy of pure copper exposed in bentonite under oxic conditions[J]. Electrochim. Acta, 2011, 56: 7862 | [17] | Feliu V, González J A, Andrade C, et al.Equivalent circuit for modelling the steel-concrete interface. I. Experimental evidence and theoretical predictions[J]. Corros. Sci., 1998, 40: 975 | [18] | Barbalat M, Lanarde L, Caron D, et al.Electrochemical study of the corrosion rate of carbon steel in soil: Evolution with time and determination of residual corrosion rates under cathodic protection[J]. Corros. Sci., 2012, 55: 246 | [19] | Lair V, Antony H, Legrand L, et al.Electrochemical reduction of ferric corrosion products and evaluation of galvanic coupling with iron[J]. Corros. Sci., 2006, 48: 2050 | [20] | Erable B, Du?eanu N M, Ghangrekar M M, et al.Application of electro-active biofilms[J]. Biofouling, 2010, 26: 57 | [21] | Rabaey K, Rodríguez J, Blackall L L, et al.Microbial ecology meets electrochemistry: Electricity-driven and driving communities[J]. ISME J., 2007, 1: 9 | [22] | Lovley D R. Dissimilatory Fe (III) and Mn(IV) reduction[J]. Microbiol. Rev., 1991, 55: 259 | [23] | Tugel J B, Hines M E, Jones G E.Microbial iron reduction by enrichment cultures isolated from estuarine sediments[J]. Appl. Environ. Microbiol., 1986, 52: 1167 | [24] | Lovley D R, Goodwin S.Hydrogen concentrations as an indicator of the predominant terminal electron-accepting reactions in aquatic sediments[J]. Geochim. Cosmochim. Acta, 1988, 52: 2993 | [25] | Liu D, Dong H, Bishop M E, et al.Microbial reduction of structural iron in interstratified illite-smectite minerals by a sulfate-reducing bacterium[J]. Geobiology, 2012, 10: 150 | [26] | Reguera G, McCarthy K D, Mehta T,et al.Extracellular electron transfer via microbial nanowires[J]. Nature, 2005, 435: 1098 | [27] | Li Y L, Vali H, Sears S K, et al.Iron reduction and alteration of nontronite NAu-2 by a sulfate-reducing bacterium[J]. Geochim. Cosmochim. Acta, 2004, 68: 3251 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|