Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (1): 10-17    DOI: 10.11902/1005.4537.2017.009
  研究报告 本期目录 | 过刊浏览 |
酸性土壤环境中Q235钢的微生物腐蚀行为
于利宝1,2, 闫茂成1(), 王彬彬3, 舒韵1, 许进1, 孙成1
1 中国科学院金属研究所 沈阳 110016
2 中国科学院大学 北京 100049
3 中国石油西南管道公司 成都 610041
Microbial Corrosion of Q235 Steel in Acidic Red Soil Environment
Libao YU1,2, Maocheng YAN1(), Binbin WANG3, Yun SHU1, Jin XU1, Cheng SUN1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 PetroChina West Pipeline Company, Chengdou 610041, China
全文: PDF(3149 KB)   HTML
摘要: 

采用电化学阻抗谱 (EIS)、极化电位扫描等电化学技术和微观形貌观察方法研究含硫酸盐还原菌 (SRB) 的酸性红壤环境中Q235钢的微生物腐蚀 (MIC) 行为及对应电化学过程特征。结果表明:酸性红壤环境中,前4 d为环境适应期,期间SRB细菌数量减少,SRB对腐蚀电化学过程没有显著影响;生长期中SRB促使Q235钢的自腐蚀电位和极化电阻降低,腐蚀速率增大;EIS极化电阻测试结果表明,有菌红壤中腐蚀速率约为无菌红壤中的2倍。SRB呼吸代谢活动可与红壤颗粒表层FeOOH等铁氧化物作用,引起FeOOH的微生物异化还原,促进Q235钢的腐蚀电化学过程。

关键词 土壤腐蚀硫酸盐还原菌红壤管道电子转移    
Abstract

Microbial corrosion induced by sulphate-reducing bacteria (SRB) for carbon steel Q235 beneath coating defects was studied by means of electrochemical impedance spectroscopy (EIS), polarization measurement and microscopic surface observation. Results showed that, in acid red soil environment, SRB have no significant effect on the electrochemical process during the initial environmental adaptation period. Then in the next period, the respiratory metabolic activities of the growing SRB lead to decrease of the free corrosion potential of Q235 steel and accelerate corrosion process of the carbon steel. Bacteria can react with iron oxides in the red soil, causing microbial dissimilatory reduction of iron oxides, which promotes electrochemical corrosion process of the carbon steel.

Key wordssoil corrosion    sulphate-reducing bacteria    acid soil    pipeline    electron charge transfer
收稿日期: 2017-01-14     
ZTFLH:  TG172.4  
基金资助:国家科技基础条件平台-国家材料环境腐蚀平台项目 (2005DKA10400) 和中国科学院A类战略性先导科技专项 (XDA13040500)
作者简介:

作者简介 于利宝,男,1990年生,硕士生

引用本文:

于利宝, 闫茂成, 王彬彬, 舒韵, 许进, 孙成. 酸性土壤环境中Q235钢的微生物腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 10-17.
Libao YU, Maocheng YAN, Binbin WANG, Yun SHU, Jin XU, Cheng SUN. Microbial Corrosion of Q235 Steel in Acidic Red Soil Environment. Journal of Chinese Society for Corrosion and protection, 2018, 38(1): 10-17.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.009      或      https://www.jcscp.org/CN/Y2018/V38/I1/10

图1  硫酸盐还原菌数量随时间的变化曲线
图2  Q235钢在灭菌和接菌水饱和红壤中暴露20 d后的SEM形貌
图3  Q235钢在灭菌和接菌水饱和红壤中暴露20 d后表面的激光共聚焦形貌比较
图4  灭菌和接菌红壤中Q235钢开路电位随时间的变化曲线
图5  Q235钢在灭菌红壤中包埋不同时间的阻抗谱
图6  Q235钢在接菌红壤中包埋不同时间的阻抗谱
图7  EIS数据拟合的等效电路模型
Time / d Rs / Ωcm2 Yf / Ssncm-2 nf Rf / kΩcm2 Ydl / Ssncm-2 ndl Rct / kΩcm2
Sterile soil
1 588.8 7.123×10-5 0.8335 0.3075 1.517×10-4 0.8770 2.366
3 561.1 8.340×10-5 0.7542 1.070 1.237×10-4 0.9127 4.808
5 624.8 7.274×10-5 0.6603 2.538 1.304×10-4 0.9379 6.498
10 605.8 8.173×10-5 0.7129 2.588 1.824×10-4 0.9661 5.579
15 608.9 9.339×10-5 0.6726 3.225 2.028×10-4 0.9763 6.311
20 609.9 8.671×10-5 0.7065 3.353 2.403×10-4 0.9830 6.547
SRB inoculated soil
1 403.1 7.729×10-5 0.8359 0.2622 1.465×10-4 0.8583 2.425
3 401.5 8.382×10-5 0.7572 0.9095 1.116×10-4 0.8920 3.650
5 691.9 1.289×10-4 0.6731 1.128 3.962×10-4 0.6285 3.764
10 693.8 1.635×10-4 0.6318 1.625 3.752×10-4 0.7712 3.376
15 709.9 1.796×10-4 0.6108 2.284 3.526×10-4 0.9264 3.445
20 717.8 1.743×10-4 0.5998 2.635 3.425×10-4 0.9493 3.461
表1  灭菌和接菌土红壤中EIS拟合结果
图8  灭菌和接菌红壤中Q235钢极化电阻Rp和Rp-1随时间的变化规律
图9  玻碳电极在灭菌和接菌红壤中包埋10 d后的循环伏安曲线
图10  Q235钢在灭菌和接菌红壤中包埋10 d后的极化曲线
[1] Usher K M, Kaksonen A H, Cole I, et al.Critical review: Microbially influenced corrosion of buried carbon steel pipes[J]. Int. Biodeterior. Biodegrad., 2014, 93: 84
[2] Wolfram J H, Rogers R D, Gazso L G.Microbial degradation processes in radioactive waste repository and in nuclear fuel storage areas [A]. Proceedings of the NATO Advanced Research Workshop[C]. Budapest, Hungary, 1997: 37
[3] Von Wolzogen Kuehr C A H, Der Van Vlugt L S. Graphitization of cast iron as an electrobiochemical process in anaerobic soils [R]. Frederick Maryland: United States Army Biological Laboratories, 1964: 18
[4] Iversen A.Microbially influenced corrosion on stainless steel in waste water treatment plants: Part 2[J]. Br. Corros. J., 2013, 36: 284
[5] Dinh H T, Kuever J, Mu?mann M, et al.Iron corrosion by novel anaerobic microorganisms[J]. Nature, 2004, 427: 829
[6] Lovley D R, Phillips E J P. Competitive mechanisms for inhibition of sulfate reduction and methane production in the zone of ferric iron reduction in sediments[J]. Appl. Environ. Microbiol., 1987, 53: 2636
[7] Luu Y S, Ramsay J A.Review: Microbial mechanisms of accessing insoluble Fe(III) as an energy source[J]. World J. Microbiol. Biotechnol., 2003, 19: 215
[8] Yan M C, Sun C, Xu J, et al.Role of Fe oxides in corrosion of pipeline steel in a red clay soil[J]. Corros. Sci., 2014, 80: 309
[9] Yan M C, Sun C, Dong J H, et al.Electrochemical investigation on steel corrosion in iron-rich clay[J]. Corros. Sci., 2015, 97: 62
[10] Yan M C, Sun C, Xu J, et al.Anoxic corrosion behavior of pipeline steel in acidic soils[J]. Ind. Eng. Chem. Res., 2014, 53: 17615
[11] Cao C N.Material Natural Environment Corrosion in China [M]. Beijing: Chemical Industry Press, 2005(曹楚南. 中国材料的自然环境腐蚀 [M]. 北京: 化学工业出版社, 2005)
[12] Wu T Q, Ding W C, Zeng D C, et al.Microbiologically induced corrosion of X80 pipeline steel in an acid soil solution: (I) Electrochemical analysis[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 346(吴堂清, 丁万成, 曾德春等. 酸性土壤浸出液中X80钢微生物腐蚀研究: (I)电化学分析[J]. 中国腐蚀与防护学报, 2014, 34: 346)
[13] Webster B J, Newman R C.Producing rapid sulfate-reducing bacteria (SRB)-Influenced corrosion in the laboratory [R]. West Conshohocken, PA: ASTM International, 1994
[14] Yu L, Duan J Z, Zhao W, et al.Characteristics of hydrogen evolution and oxidation catalyzed by Desulfovibrio caledoniensis biofilm on pyrolytic graphite electrode[J]. Electrochim. Acta, 2011, 56: 9041
[15] Duan J Z, Wu S R, Zhang X J, et al.Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater[J]. Electrochim. Acta, 2008, 54: 22
[16] Rosborg B, Kosec T, Kranjc A, et al.Electrochemical impedance spectroscopy of pure copper exposed in bentonite under oxic conditions[J]. Electrochim. Acta, 2011, 56: 7862
[17] Feliu V, González J A, Andrade C, et al.Equivalent circuit for modelling the steel-concrete interface. I. Experimental evidence and theoretical predictions[J]. Corros. Sci., 1998, 40: 975
[18] Barbalat M, Lanarde L, Caron D, et al.Electrochemical study of the corrosion rate of carbon steel in soil: Evolution with time and determination of residual corrosion rates under cathodic protection[J]. Corros. Sci., 2012, 55: 246
[19] Lair V, Antony H, Legrand L, et al.Electrochemical reduction of ferric corrosion products and evaluation of galvanic coupling with iron[J]. Corros. Sci., 2006, 48: 2050
[20] Erable B, Du?eanu N M, Ghangrekar M M, et al.Application of electro-active biofilms[J]. Biofouling, 2010, 26: 57
[21] Rabaey K, Rodríguez J, Blackall L L, et al.Microbial ecology meets electrochemistry: Electricity-driven and driving communities[J]. ISME J., 2007, 1: 9
[22] Lovley D R. Dissimilatory Fe (III) and Mn(IV) reduction[J]. Microbiol. Rev., 1991, 55: 259
[23] Tugel J B, Hines M E, Jones G E.Microbial iron reduction by enrichment cultures isolated from estuarine sediments[J]. Appl. Environ. Microbiol., 1986, 52: 1167
[24] Lovley D R, Goodwin S.Hydrogen concentrations as an indicator of the predominant terminal electron-accepting reactions in aquatic sediments[J]. Geochim. Cosmochim. Acta, 1988, 52: 2993
[25] Liu D, Dong H, Bishop M E, et al.Microbial reduction of structural iron in interstratified illite-smectite minerals by a sulfate-reducing bacterium[J]. Geobiology, 2012, 10: 150
[26] Reguera G, McCarthy K D, Mehta T,et al.Extracellular electron transfer via microbial nanowires[J]. Nature, 2005, 435: 1098
[27] Li Y L, Vali H, Sears S K, et al.Iron reduction and alteration of nontronite NAu-2 by a sulfate-reducing bacterium[J]. Geochim. Cosmochim. Acta, 2004, 68: 3251
[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[3] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[4] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[5] 陈旭, 李帅兵, 郑忠硕, 肖继博, 明男希, 何川. X70管线钢在大庆土壤环境中微生物腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[6] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[7] 朱亦晨,刘光明,刘欣,裴锋,田旭,师超. 红壤地区接地材料现场埋样与加速腐蚀实验的相关性研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 550-556.
[8] 赵国仙,黄静,薛艳. 某油田地面集输管道用材腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 557-562.
[9] 戚鹏, 万逸, 曾艳, 郑来宝, 张盾. 海洋环境中硫酸盐还原菌的快速测定方法研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 387-394.
[10] 吴堂清,周昭芬,王鑫铭,张德闯,尹付成,孙成. 微生物致裂的热力学和动力学分析[J]. 中国腐蚀与防护学报, 2019, 39(3): 227-234.
[11] 王帅星,杜楠,刘道新,肖金华,邓丹萍. X80钢在酸性红壤模拟液及室外红壤中的腐蚀动力学规律及相关性分析[J]. 中国腐蚀与防护学报, 2019, 39(1): 18-28.
[12] 李鑫,陈旭,宋武琦,杨佳星,吴明. pH值对X70钢在海泥模拟溶液中微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 565-572.
[13] 管方, 翟晓凡, 段继周, 侯保荣. 阴极极化对硫酸盐还原菌腐蚀影响的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(1): 1-10.
[14] 梅朦, 郑红艾, 陈惠达, 张鸣, 张大全. 硫酸盐还原菌对Cu在循环冷却水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
[15] 王晓霖, 闫茂成, 舒韵, 孙成, 柯伟. 破损涂层下管线钢的交流电干扰腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(4): 341-346.