Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (5): 410-418    DOI: 10.11092/1005.4537.2014.069
  本期目录 | 过刊浏览 |
铝颜料表面改性防腐技术的研究与发展
杜斌(), 周世生, 李敏, 马丽萍
西安理工大学印刷包装工程学院 西安 710048
Progress in Research and Development for Surface Modification of Aluminum Pigments and Related Techniques
DU Bin(), ZHOU Shisheng, LI Min, MA Liping
Faculty of Printing and Packaging Engineering, Xi'an University of Technology, Xi'an 710048, China
全文: PDF(867 KB)   HTML
摘要: 

结合国内外学者对铝颜料的改性手段和技术,概括了铝颜料表面改性中常用的多种无机材料和有机材料,介绍了铝颜料表面改性的主要方法,包括溶胶/凝胶法、原位聚合法、乳液聚合法、等离子聚合法和分散聚合法等,最后针对改性铝颜料的性能变化阐述了采用不同的改性材料和改性方法对铝颜料性能改善方面的影响,并指出了铝颜料表面防腐改性的未来研究趋势。

关键词 铝颜料表面改性防腐性能    
Abstract

A variety of inorganic and organic materials commonly used for surface modification of aluminum pigments was firstly summarized. While the main methods for surface modification of aluminum pigments, including sol-gel encapsulation, in-situ polymerization, emulsion polymerization, plasma polymerization and dispersion polymerization etc. were then introduced. The influence of materials and measures of surface modification on the performance of the modified aluminum pigments was also illustrated. Finally, the development trend in this field was prospected as well.

Key wordsaluminum pigment    surface modification    corrosion protection    performance
    
ZTFLH:  TS852  
基金资助:陕西省"13115"科技创新工程项目(2009ZDGC-06)和西安理工大学优秀博士学位论文研究基金项目 (104-211103)资助
作者简介: null

杜斌,男,1983年生,博士生,研究方向防腐蚀及特种油墨

引用本文:

杜斌, 周世生, 李敏, 马丽萍. 铝颜料表面改性防腐技术的研究与发展[J]. 中国腐蚀与防护学报, 2014, 34(5): 410-418.
Bin DU, Shisheng ZHOU, Min LI, Liping MA. Progress in Research and Development for Surface Modification of Aluminum Pigments and Related Techniques. Journal of Chinese Society for Corrosion and protection, 2014, 34(5): 410-418.

链接本文:

https://www.jcscp.org/CN/10.11092/1005.4537.2014.069      或      https://www.jcscp.org/CN/Y2014/V34/I5/410

Chemical name Molecular formula Abbreviation
Titanium isopropoxide C12H28O4Ti TIP
Tetraethyl orthosilicate C8H20O4Si TEOS
Tetra-n-propoxyzirconium C12H28O4Zr TPOZ
3-Glycidoxypropylt-
imethoxysilane
C9H20O5Si GPTMS
Tetramethyl orthosilicate C4H12O4Si TMOS
γ-Methacryloxypropy-
ltrimethoxysilane
C10H20O5Si MAPTS
3-Aminopropyltri
methoxysilane
C6H17NO3Si APTMS
Methyl triethoxysilane C7H18O3Si MTES
γ-Mercaptopropyltrim-
ethoxysilane
C6H16O3SiS MPTES
Vinyl trimethoxysilane C8H18O3Si VTMS
Methyl trimethoxysilane C4H12O3Si MTMS
Vinyl triacetoxysilane C8H12O6Si VTAS
Phenyl triethoxysilane C12H20O3Si PTMS
Bis-[3(triethoxysilyl)propyl]
tetrasulfide
C18H42O6Si2S4 BTESTP
Diethoxydimethylsilane C6H16O2Si DEDMS
Bis [trimethoxysilylpropyl]
ethane
C14H34O6Si2 BTSE
Bis-[trimethoxysilylpropyl]
amine
C12H31NO6Si2 Bis-amino silane
表1  铝颜料表面改性防腐技术中常用的偶联剂
Organic-inorganic hybrid system Functional additive agent Substrate Reference
GPTMS, TEOS Copper [32]
GPTMS, TMOS 2-methyl piperidine AZ91D Mg-alloy [33]
BTES AA1050 Al-alloy [34]
TAP, TPOZ, GPTMS TMSP AZ31B Mg-alloy [35]
TEOS, GMA, MAPTS, EGDMA Ce(NO3)3·6H2O AA2024T3 Al-alloy [36]
GPTMS, TIP Ce(NO3)3, 8-hydroxyquinoline ZK30 Mg-alloy [37]
BTESPT AZ31 Mg-alloy [38]
MTEOS Mg(NO3)2 AA2024-T3 Al-alloy [39]
BTSE Cold rolled Al-sheets [40]
BTESPT WE54 Mg-alloy [41]
GPTMS, TEOS Zn(NO3)2 AZ91D Mg-alloy [42]
GPTMS, TEOS AZ91D Mg-alloy [43]
TMOS, DEDMS, ZTB Ce(NO3)3·6H2O AZ91 Mg-alloy [44]
GPTMS, TPOZ AA2024T3 Al-alloy [45]
TEOS Polyaniline AZ31 Mg-alloy [46]
BTSE ZE41 Mg-alloy [47]
MPTMS Copper plates [48]
Zr(OC4H9)4, ZrO(NO3)2 2-mercaptobenzothiazole, Ce(NO3)3 AA2024-T3 Al-alloy [49]
MPTMS Die-cast AZ91 Mg-alloy [50]
TES, TEOS Zirconium and cerium oxide nanoparticles AA-2024-T3 Al-alloy [51]
MTES Ce(NO3)3 AZ91 Mg-alloy [52]
GPTMS, TPOZ Thermally activated hydrotalcite AA2024-T3 Al-alloy [53]
Ce(NO3)3 AA2024,AA3105 Al-alloy and
AZ-91, AZ-31 Mg-alloy
[54]
GPTMS POSS AA2024 Al-alloy [55]
GPTMS, TEOS, MTES, BPA Ce2(SO4)3 AA2024 Al-alloy [56]
GPTMS, TPOZ Dried and Calcined Red mud particles AA2024-T3 Al-alloy [57]
表2  金属防腐有机无机杂化体系一览表
图1  铝粉改性前后分散性对比[71]
[1] Emregül K C, Aksüt A A. The effect of sodium molybdate on the pitting corrosion of aluminum[J]. Corros. Sci., 2003, 45(11): 2415-2433
[2] Putilova I N,Balezin S A,Barannik V P. Metallic Corrosion Inhibitors[M]. New York: Pergamon Press, 1960
[3] Becaria A M, Chiarutini L C. The inhibitive action of metacryloxypropylmethoxysilane (MAOS) on aluminum corrosion in NaCl solution[J]. Corros. Sci., 1999, 41(5): 885-889
[4] Hu N, Zhong J M, Sun B S, et al. Study of modification of superfine aluminum particles coated with PVP[J]. China Powder Sci. Technol., 2011, 17(5): 5-10
[4] (胡楠, 钟景明, 孙本双等. PVP对球形铝粉进行表面包覆改性的研究[J]. 中国粉体技术. 2011, 17(5): 5-10)
[5] Bajat J B, Milošev I, Jovanović Ž, et al. Corrosion protection of aluminium pretreated by vinyltriethoxysilane in sodium chloride solution[J]. Corros. Sci., 2010, 52: 1060-1069
[6] Kield A, Greiwe K. Encapsulated aluminum pigments[J]. Prog. Org. Coat., 1999, 37: 179-183
[7] Pan X M, Wu J S, Xiao K, et al. Preparation and characterization of anti-corrosion self-healing and hydrophobic coating on aluminum alloy[J]. Acta Metall. Sin., 2013, 49(9): 1113-1120
[7] (潘晓铭, 吴俊升, 肖葵等. 铝合金表面缓蚀自修复疏水膜层的制备与表征[J]. 金属学报, 2013, 49(9): 1113-1120)
[8] Ralf S, Ulrich S. Corrosion protection of aluminum pigments by sol-gel coatings[J]. Corros. Sci., 2007, 8(49): 3325-3332
[9] Hamed R, Reza M, Akbar H N. Corrosion and wear resistance characterization of environmentally friendly sol-gel hybrid nanocomposite coating on AA5083[J]. J. Mater. Sci. Technol., 2013, 29(7): 603-608
[10] Rajendran B V, Thomas N J, Mathur G S. Sol-gel coating with 3-mercaptopropyltrimethoxysilane as precursor for corrosion protection of aluminium metal[J]. J. Mater. Sci. Technol., 2014, 30(8): 814-820
[11] Ruchi G W, Shantaram M, Khanna A S, et al. Development of water-repellent organic-inorganic hybrid sol-gelcoatings on aluminum using short chain perfluoro polymer emulsion[J]. Appl. Surf. Sci., 2013, 283(15): 1051-1059
[12] Wu Y. Preparation, modification and application of flash aluminum pigments [D]. Nanjing University of Science and Technology, 2006
[12] (吴垠. 闪光铝粉颜料的制备、改性及其应用研究 [D]. 南京理工大学, 2006)
[13] Huang S L. Multi-layer encapsulation of aluminum flakes [D]. Changsha: Central South University, 2010
[13] (黄舒丽. 片状铝粉表面多层包覆性能的研究 [D]. 长沙: 中南大学, 2010)
[14] Campos A L, Silva N T, Melo F C L, et al. Crystallization kinetics of orthorhombic mullite from diphasic gels[J]. J. Non-Cryst. Solids., 2002, 304: 19-24
[15] El-Sherbini E E, Abd-El-Wahab S M, Deyab M A. Studies on corrosion inhibition of aluminum in 1.0 M HCl and 1.0 M H2SO4 solutions by ethoxylated fatty acids[J]. Mater. Chem. Phys., 2003, 82: 631-637
[16] Wu C Y, James P B, Davis G D. Enhancement of corrosion resistance of protective coatings formed by spontaneous surface polymerization[J]. Int. J. Adhes. Adhes., 2003, 23: 499-506
[17] Philip M K, Alexandra B, Krister H, et al. Surfactant inhibition of aluminium pigments for waterborne printing inks[J]. Corros. Sci., 2008, 50: 2282-2287
[18] Chen Z L. Research of aluminum flakes polymerized by styrene [D]. Changsha: Central South University, 2007
[18] (陈子路. 苯乙烯聚合包覆片状铝粉的研究 [D]. 长沙: 中南大学, 2007)
[19] Müller B, Schmelich T. High-molecular weight styrene-maleic acid copolymers as corrosion inhibitors for aluminium pigments[J]. Corros. Sci., 1995, 37: 877-883
[20] Müller B. Polymeric corrosion inhibitors for aluminium pigment[J]. React. Funct. Polym., 1999, 39: 165-177
[21] Müller B. Citric acid as corrosion inhibitor for aluminium pigment[J]. Corros. Sci., 2004, 46(1): 159-167
[22] Müller B, Fischer S. Epoxy ester resins as corrosion inhibitors for aluminium and zinc pigments[J]. Corros. Sci., 2006, 48(9): 2406-2416
[23] Manash R D, Sekh M. Kinetics and adsorption behaviour of benzoate and phthalate at the α-alumina-water interface: Influence of functionality[J]. Colloid. Surf., 2005, 264(1)A: 90-100
[24] Zaafarany I. Corrosion Inhibition of aluminum in aqueous alkaline solutions by alginate and pectate water-soluble natural polymer anionic polyelectrolytes[J]. Portugaliae Electrochim Acta, 2012, 30(6): 419-426
[25] Chris O A, Conrad K E, Cynthia E O, et al. Corrosion inhibition of aluminium pigments in aqueous alkaline medium using plant extracts[J]. Environ. Pollut., 2012, 1(2): 45-60
[26] Hassan R M, Zaafarany I. Kinetics of Corrosion inhibition of aluminum in acidic media by water-soluble natural polymeric pectates as anionic polyelectrolyte inhibitors[J]. Materials, 2013, 6: 2436-2451
[27] Liu H. Preparation of polyacrylate/alumina or aluminum composite particles by in-situ polymerization and study of its properties [D]. Changsha: Central South University, 2007
[27] (刘辉. 原位聚合制备聚丙烯酸酯/氧化铝或金属铝复合粒子及性能研究 [D]. 长沙: 中南大学, 2007)
[28] Liang W, Ye H Q, Chen Y Q, et al. Corrosion resistance of the flaky aluminum powder coated by emulsion polymerization[J]. J. Chin. Soc. Corros. Prot., 2011, 31(1): 68-70
[28] (梁伟, 叶红齐, 陈玉琼等. 乳液聚合法包覆片状铝粉及其耐腐蚀性研究[J]. 中国腐蚀与防护学报, 2011, 31(1): 68-70)
[29] Qu X Y, Zhu H W, Hu Y, et al. Preparation of waterborne aluminum pigment through in-situ ternary copolymerization[J]. China Coat., 2011, 26(4): 47-50
[29] (瞿晓岳, 朱宏伟, 胡豫等. 原位三元共聚制备高亮度水性铝颜料[J]. 中国涂料, 2011, 26(4): 47-50)
[30] Chen J, Pi P H, Cai Z Q, et al. Application of encapsulated aluminum pigments to waterborne coating[J]. Electroplat. Finish., 2010, 30(1): 71-74
[30] (陈军, 皮丕辉, 蔡智奇等. 包覆型铝粉颜料在水性涂料中的应用[J]. 电镀与涂饰, 2010, 30(1): 71-74)
[31] Chen Y Q. Modification of the copolymer coated aluminum flakes [D]. Changsha: Central South University, 2010
[31] (陈玉琼. 片状铝粉表面包覆共聚物的改性研究 [D]. 长沙: 中南大学, 2010)
[32] Defloriana F, Rossi S, Fedrizzi L, et al. Integrated electrochemical approach for the investigation of silane pre-treatments for painting copper[J]. Prog. Org. Coat., 2008, 63(3): 338-344
[33] Shi H W, Liu F C, Han E-H. Corrosion protection of AZ91D magnesium alloy with sol-gel coating containing 2-methyl piperidine[J]. Prog. Org. Coat., 2009, 66(3): 183-191
[34] De G I, Tourwe E, Biesemans M, et al. Silane solution stability and film morphology of water-based bis-1,2-(triethoxysilyl) ethane for thin-film deposition on aluminium[J]. Prog. Org. Coat., 2008, 63(1): 38-42
[35] Lamaka S V, Montemor M F, Galio A F, et al. Novel hybrid sol-gel coatings for corrosion protection of AZ31B magnesium alloy[J]. Electrochim. Acta, 2008, 53(14): 4773-4783
[36] Rosero-Navarro N C, Paussa L, Andreatta F, et al. Optimization of hybrid sol-gel coatings by combination of layers with complementary properties for corrosion protection of AA2024[J]. Prog. Org. Coat., 2010, 69(2): 167-174
[37] Lamaka S V, Knornschild G, Taryba M G, et al. Complex anticorrosion coating for ZK30 magnesium alloy[J]. Electrochim. Acta, 2009, 55(1): 131-141
[38] Zhang J, Wu C. Corrosion protection behavior of AZ31 magnesium alloy with cathodic electrophoretic coating pretreated by silane[J]. Prog. Org. Coat., 2009, 66(4): 387-392
[39] Varma R, Duffy B, Cassidy J. Influence of magnesium nitrate on the corrosion performance of sol-gel coated AA2024-T3 aluminium alloy[J]. Surf. Coat. Technol., 2009, 204(3): 277-284
[40] Batan A, Brusciotti F, Graeve D I, et al. Comparison between wet deposition and plasma deposition of silane coatings on aluminium[J]. Prog. Org. Coat., 2010, 69(2): 126-132
[41] Pinto R, Carmezim M J, Ferreira M G S, et al. A two-step surface treatment, combining anodisation and silanisation, for improved corrosion protection of the Mg alloy WE54[J]. Prog. Org. Coat., 2010, 69(2): 143-149
[42] Zhong X K, Li Q, Hu J Y, et al. A novel approach to heal the sol-gel coating system on magnesium alloy for corrosion protection[J]. Electrochim. Acta, 2010, 55(7): 2424-2429
[43] Hu J Y, Li Q, Zhong X K, et al. Composite anticorrosion coatings for AZ91D magnesium alloy with molybdate conversion coating and silicon sol-gel coatings[J]. Prog. Org. Coat., 2009, 66(3): 199-205
[44] Barranco V, Carmona N, Galvan J C, et al. Electrochemical study of tailored sol-gel thin films as pre-treatment prior to organic coating for AZ91 magnesium alloy[J]. Prog. Org. Coat., 2010, 68(4): 347-355
[45] Alvarez P, Collazo A, Covelo A, et al. The electrochemical behaviour of sol-gel hybrid coatings applied on AA2024-T3 alloy: Effect of the metallic surface treatment[J]. Prog. Org. Coat., 2010, 69(2): 175-183
[46] Wang H, Akid R, Gobara M. Scratch-resistant anticorrosion sol-gel coating for the protection of AZ31 magnesium alloy via a low temperature sol-gel route[J]. Corros. Sci., 2010, 52(8): 2565-2570
[47] Chakraborty B P,Singh R R K. Electrochemical impedance spectroscopic investigation of the role of alkaline pre-treatment in corrosion resistance of a silane coating on magnesium alloy, ZE41[J]. Electrochim. Acta, 2011, 56(11): 3790-3798
[48] Chen M A, Lu X B, Guo Z H, et al. Influence of hydrolysis time on the structure and corrosion protective performance of (3-mercaptopropyl) triethoxysilane film on copper[J]. Corros. Sci., 2011, 53(9): 2793-2802
[49] Andreatta F, Paussa L, Lanzutti A, et al. Development and industrial scale-up of ZrO2 coatings and hybrid organic-inorganic coatings used as pre-treatments before painting aluminium alloys[J]. Prog. Org. Coat., 2011, 72(1/2): 3-14
[50] Scott A F, Gray-Munro J E, Shepherd J L. Influence of coating bath chemistry on the deposition of 3-mercaptopropyl trimethoxysilane films deposited on magnesium alloy[J]. J. Colloid Interface Sci., 2010, 343(2): 474-483
[51] Gonzalez E, Pavez J, Azocar I, et al. A silanol-based nanocomposite coating for protection of AA-2024 aluminium alloy[J]. Electrochim. Acta, 2011, 56(22): 7586-7595
[52] Correa P S, Malfatti C F, Azambuja D S. Corrosion behavior study of AZ91 magnesium alloy coated with methyltriethoxysilane doped with cerium ions[J]. Prog. Org. Coat., 2011, 72(4): 739-747
[53] Collazo A, Hernandez M, Novoa X R, et al. Effect of the addition of thermally activated hydrotalcite on the protective features of sol-gel coatings applied on AA2024 aluminium alloys[J]. Electrochim. Acta, 2011, 56(23): 7805-7814
[54] Rosero-Navarro N C, Curioni M, Castro M, et al. Glass-like CexOy sol-gel coatings for corrosion protection of aluminium and magnesium alloys[J]. Surf. Coat. Technol., 2011, 206(2/3): 257-264
[55] Jerman I, Surca V A, Novoa X R, et al. Influence of amino functionalised POSS additive on the corrosion properties of (3-glycidoxypropyl) trimethoxysilane coatings on AA 2024 alloy[J]. Prog. Org. Coat., 2011, 72(3): 334-342
[56] Kozhukharov S, Kozhukharov V, Schem M, et al. Protective ability of hybrid nano-composite coatings with cerium sulphate as inhibitor against corrosion of AA2024 aluminium alloy[J]. Prog. Org. Coat., 2012, 73(1): 95-103
[57] Collazo A, Covelo A, Novoa X R, et al. Corrosion protection performance of sol-gel coatings doped with red mud applied on AA2024-T3[J]. Prog. Org. Coat., 2012, 74(2): 334-342
[58] Yang X F, Tallman D E, Gelling V J, et al. Use of a sol-gel conversion coating for aluminum corrosion protection[J]. Surf. Coat. Technol., 2001, 140: 44-50
[59] Zhu H W, Qu X Y, Hu Y, et al. Corrosion inhibition of flaky aluminium powders prepared through sol-gel process[J]. Corros. Sci., 2011, 53: 481-486
[60] Zhu H W, Chen Z X, Sheng Y, et al. Flaky polyacrylic acid/aluminium composite particles prepared using in-situ polymerization[J]. Dye. Pigment., 2010, 86: 155-160
[61] Liu H, Ye H Q, Tang X D. Aluminum pigment encapsulated by in situ copolymerization of styrene and malefic acid[J]. Appl. Surf. Sci., 2007, 254: 616-620
[62] Liu H, Ye H Q, Zhang Y C. Preparation of PMMA grafted aluminum powder by surface-initiated in situ polymerization[J]. Appl. Surf. Sci., 2007, 253: 7219-7224
[63] Takashi K, Kenji Y. Polymer coated aluminum pigment having water dispersible property and method for producing the same [P]. JP2004292690, 2004
[64] Batzilla T, Tulke A. Preparation of encapsulated aluminum pigments by emulsion polymerization and their characterization[J]. J. Coat. Technol., 1998, 881: 77-83
[65] Yasuda H. Plasma Polymerization [M]. Florida: New York Academic, 1985
[66] Iriyama Y, Ihara T, Kiboku M. Plasma polymerization of tetraethoxysilane on aluminum granules for corrosion protection[J]. Thin Solid Films, 1996, 287: 169-173
[67] Kimura I, Yoshinari T, Haruyuki Y, et al. Encapsulation of aluminum flakes by dispersion polymerization of styrene in a nonaqueous system with reactive surfactants[J]. J. Appl. Polym. Sci., 2001, 81: 675-683
[68] Philip K, Anders E C P, Krister H, et al. Surface modification for aluminum pigment inhibition[J]. Adv. Colloid Interface Sci., 2006, 128-130: 121-134
[69] Song S Q, Xue H. HSAB principle and its application in supramolecular chemistry[J]. Technol. Develop. Chem. Ind., 2006, 35(1): 18-20
[69] (宋少青, 薛红. 软硬酸碱原理及其在超分子化学中的应用[J]. 化工技术与开发, 2006, 35(1): 18-20)
[70] Kummert R, Stumm W. The surface complexation of organic acids on hydrous γ-Al2O3 [J]. J. Colloid Interface Sci., 1980, 75(2): 373-385
[71] Li L J. Surface modification of aluminum pigments and its application in paint [D]. Guangzhou: South China University of Technology, 2008
[71] (李利君. 颜料铝粉的表面包覆改性及在涂料中的应用 [D]. 广州: 华南理工大学, 2008)
[1] 乔及森, 夏宗辉, 刘立博, 许佳敏, 刘旭东. 铝镁双金属反向等温包覆挤压棒材耐腐蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(2): 255-262.
[2] 栾浩, 孟凡帝, 刘莉, 崔宇, 刘叡, 郑宏鹏, 王福会. 间苯二胺-氧化石墨烯/有机涂层的制备及防腐性能研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 161-168.
[3] 戴婷, 顾艳红, 高辉, 刘凯龙, 谢小辉, 焦向东. 水下摩擦螺柱焊接头在饱和CO2中的电化学性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[4] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[5] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[6] 孙海静, 覃明, 李琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.
[7] 刘海霞, 黄峰, 袁玮, 胡骞, 刘静. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[8] 解璇, 刘莉, 王福会. TiO2的制备及表面修饰工艺对其光电化学阴极保护性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 123-130.
[9] 沈树阳, 王东胜, 孙士斌, 杨剔, 赵前进, 王鑫, 张亚飞, 常雪婷. 深冷处理对EH40极寒环境船用钢板的海水腐蚀性能影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[10] 师超,邵亚薇,熊义,刘光明,俞跃龙,杨志广,许传钦. 硅烷偶联剂改性磷酸锌对环氧涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[11] 徐勋虎,何翠群,向军淮,王玲,张洪华,郑晓冬. Co-20Re-25Cr-1Si合金在0.1 MPa纯O2中的高温氧化行为[J]. 中国腐蚀与防护学报, 2020, 40(1): 75-80.
[12] 王贵容,郑宏鹏,蔡华洋,邵亚薇,王艳秋,孟国哲,刘斌. 环氧防腐涂料在模拟海水干湿交替条件下的失效过程[J]. 中国腐蚀与防护学报, 2019, 39(6): 571-580.
[13] 王泽臣, 林君, 杨国卿, 梁尚清. 全氟磺酸膜对海洋电场电极抗腐蚀与电场响应性能影响的研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 581-587.
[14] 欧阳跃军,胡婷,王佳音,谢治辉. 镁合金表面层状双氢氧化物的电化学沉积和表征[J]. 中国腐蚀与防护学报, 2019, 39(5): 453-457.
[15] 艾鹏,刘礼祥,李晓罡,姜文涛. TiAlSiN涂层对γ-TiAl基合金抗高温氧化性能的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 306-312.