Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (4): 307-314    DOI: 10.11902/1005.4537.2013.169
  论文 本期目录 | 过刊浏览 |
Fe-Si合金在600 ℃不同气氛中的腐蚀
刘兰兰1, 2, 牛焱1
1. 中国科学院金属研究所 金属腐蚀与防护国家重点实验室 沈阳 110016; 2. 武汉科技大学材料与冶金学院 武汉 430081
Corrosion of Fe-Si Alloys in Reducing Oxidizing and Sulfidizing-oxidizing Atmospheres at 600 ℃
LIU Lanlan1, 2, NIU Yan1
1. State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; 2. School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
全文: PDF(3788 KB)   HTML
摘要: 研究了Fe-5Si,Fe-9Si和Fe-13Si合金在600 ℃下H2-CO2和H2-CO2-H2S两种气氛中的腐蚀行为。结果表明:在两种气氛中,3种合金的腐蚀均遵循近似抛物线规律;并且合金在含S和不含S气氛中的抛物线速率常数数量级分别为10-8和10-10 g2cm-4s-1。在H2-CO2气氛中合金氧化膜由Fe的氧化物外层、Fe与Si的混合氧化物内层及Si的内氧化区组成;在H2-CO2-H2S气氛中则由层状的FeS外层和FeS+SiO2混合内层组成。两种气氛中合金均没有生成连续的SiO2外氧化膜。气氛中S的加入使合金表面生成了大量的FeS,FeS中较高的离子缺陷浓度为Fe2+向外扩散提供了通道,从而明显增大了合金的腐蚀速率。Si氧化物的生成提高了Fe在两种气氛中的耐腐蚀性。
关键词 Fe-Si合金硫化氧化S的作用    
Abstract:The corrosion of three Fe-Si alloys with approximately 5%, 9% and 13% (atomic fraction) Si was studied at 600 ℃ in H2-CO2 and H2-H2S-CO2 mixtures providing oxygen and sulfur pressures of 10-19 and 10-3 Pa, respectively. Oxidation and oxidation-sulfidation experiments were carried out by continuous and discontinuous methods. The corrosion kinetics of the alloys in the two gas mixtures followed approximately the parabolic rate law with Kp values of the order of 10-8 and 10-10 g2cm-4s-1 for gases with and without sulfur. The scales formed in the oxidizing atmosphere were composed of an outermost layer of iron oxide, an intermediate complex layer containing a mixture of oxides of both elements and an internal oxidation zone of silicon. Conversely, the scales grown in oxidizing-sulfidizing atmosphere consisted of an outer multiple FeS layer plus an inner mixture of FeS and SiO2. There was no external oxidation of silicon in the two gases. The corrosion rates of the alloys were extremely faster in the oxidizing-sulfidizing atmosphere than in the oxidizing gas due to the large quantities of FeS produced, providing a path for the rapid outward diffusion of iron ions due to its much higher defect concentration than the oxide of iron. The corrosion resistance of the base metal was clearly improved by the addition of silicon.
Key wordsFe-Si alloy    sulfidation    oxidation    S effect
收稿日期: 2013-08-20     
ZTFLH:  TG17  
基金资助:国家自然科学基金项目(51371183和50971129) 资助
通讯作者: 通讯作者:牛焱,E-mail:yniu@imr.ac.cn     E-mail: yniu@imr.ac.cn
作者简介: 刘兰兰,女,1987年生,博士生,研究方向为腐蚀科学与防护

引用本文:

刘兰兰, 牛焱. Fe-Si合金在600 ℃不同气氛中的腐蚀[J]. 中国腐蚀与防护学报, 2014, 34(4): 307-314.
LIU Lanlan, NIU Yan. Corrosion of Fe-Si Alloys in Reducing Oxidizing and Sulfidizing-oxidizing Atmospheres at 600 ℃. Journal of Chinese Society for Corrosion and protection, 2014, 34(4): 307-314.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2013.169      或      https://www.jcscp.org/CN/Y2014/V34/I4/307

[1] Gesmundo F, Young D J, Roy S K. The high temperature corrosion of metals in sulfidizing-oxidizing environments: a critical review [J]. High Temp. Mater. Proc., 1989, (8): 149-190
[2] Caldin J O M, Somorjai G. Progress in Solid State Chemistry [M]. New Youk: Pergamon Press, 1975
[3] Kai W, Douglass D, Gesmundo F. The high-temperature corrosion of Fe-Nb alloys in a H 2 /H 2 O/H 2 S gas mixture [J]. Oxid. Met., 1992, 37: 189-215
[4] Shing C, Douglass D, Gesmundo F. The high-temperature corrosion behavior of Co-Nb alloys in mixed-gas atmospheres [J]. Oxid. Met., 1992, 37: 167-187
[5] Niu Y, Gesmundo F, Viani F, et al. The corrosion of Co-Nb alloys in reducing/oxidizing sulfidizing gases at 600~800 ℃[J]. Corros. Sci., 1994, 36: 1973-1998
[6] Niu Y, Gesmundo F, Viani F. The oxidation-sulfidation of Fe-Nb alloys at 600~800 ℃ in H 2 -H 2 S-CO 2 [J]. Corros. Sci., 1994, 36: 1885-1906
[7] Adachi T, Meier G H. Oxidation of iron-silicon alloys [J]. Oxid. Met., 1987, 27: 347-366
[8] Fukumoto M, Maeda S, Hayashi S, et al. Effect of water vapor on the oxidation behavior of Fe-1.5Si in air at 1073 and 1273 K [J]. Oxid. Met., 2001, 55: 401-422
[9] Yanagihara K, Suzuki S, Yamazaki S. Microscopic features in the transition from external to internal oxidation in an Fe-6 mol.% Si alloy annealed under various H 2 O-H 2 atmospheres [J]. Oxid. Met., 2002, 57: 281-296
[10] Liu L L, Guo Q Q, Niu Y. Transition between different oxidation nodesof binary Fe-Si alloys at 600~800 ℃ in pure O 2 [J]. Oxid. Met., 2013, 79: 201-224
[11] Lashin A R, Schneeweiss O. Surface oxidation of Fe-Si alloy [J]. Czech J. Phys., 2006, 56: E23-E29
[12] Porcayo-Calderon J, Brito-Figueroa E, Gonzalez-Rodr?guez J G. Oxidation behaviour of Fe-Si thermal spray coatings [J]. Mater. Lett., 1999, 38: 45-53
[13] Li H, Chen W X. Effect of sulfur partial pressures on oxidation behavior of Fe-Ni-Cr alloys [J]. Oxid. Met., 2012, 78: 103-122
[14] Atkinson A. A theoretical analysis of the oxidation of Fe-Si alloys [J]. Corros. Sci., 1982, 22: 87-102
[15] Moseley P T, Tappin G, Riviere J C. The oxidation of dilute iron-silicon alloys ([Si]<wt.%) in carbon dioxide [J]. Corros. Sci., 1982, 22: 69-86
[16] Moseley P T, Tappin G, Crossley J A A, et al. The microstructure of the scale forming on dilute iron-silicon alloys in carbon dioxide [J]. Corros. Sci., 1983, 23: 901-920
[17] Motin M A A, Zhang J, Young D J. Simultaneous corrosion of Fe-Si alloys by carbon and oxygen [J]. J. Electroche. Soc., 2010, 157: 375-381
[18] Evans H E, Hilton D A, Holm R A, et al. Influence of silicon additions on the oxidation resistance of a stainless-steel [J]. Oxid. Met.,
[19] Gesmundo F, Viani F, Znamirowski W, et al. The corrosion of iron and of three commercial steels in H 2 -H 2 S and in H 2 -H 2 S-CO 2 gas mixtures at 400~700 ℃ [J]. Werkst. Korros., 1992, 43: 83-95
[20] Brady M P, Tortorelli P F, More K L, et al. Sulfidation-oxidation behavior of FeCrAl and TiCrAl and the third-element effect [J]. Oxid. Met., 2010, 74: 1-9
[21] http://www.crct.polymtl.ca/reacweb.htm.
[22] Birks N, Meier G H, Pettit G S. Introduction to the High-temperature Oxidation of Metals [M]. Cambridge: Cambridge University Press, 2006
[23] Frank W, Engell H, Seeger A. Solubility and interstitial migration of oxygen in bcc iron [J]. Trans. Met. Soc. AIME, 1968, 242: 749-750
[24] Borg R J, Lai D Y F. Diffusion in a-Fe-Si alloys [J]. J. App. Phys., 1970, 41: 5193-5200
[25] Takada J, Yamamoto S, Kikuchi S, et al. Internal oxidation of Fe-A1 alloys in the a-phase region [J]. Oxid. Met., 1986, 25: 93-105
[26] Gesmundo F, Viani F. Transition from internal to external oxidation for binary alloys in the presence of an outer layer [J]. Oxid. Met., 1986, 25: 269-282
[27] Chen R Y, Yuen W Y D. Review of the high-temperature oxidation of iron and carbon steels in air or oxygen [J]. Oxid. Met., 2003, 59: 433-468
[28] http://www.crct.polymtl.ca/predomweb.php?lang=
[29] Niu Y, Gesmundo F, Castello P, et al. The sulfidation of Fe-15 wt%Y and Fe-30wt%Y in H 2 /H 2 S mixtures at 600~800 ℃ [J]. Corros. Sci., 1997, 39: 1093-1108
[30] Wegge S, Grabke H. Effects of silicon and of carbon on the sulfidation of iron [J]. Werkst. Korros., 1992, 43: 437-446
[31] Gude A, Mehrer H. Diffusion in the D03-type intermetallic phase Fe 3 Si [J]. Philos. Mag., 1997, 76A: 1-29
[32] Rahmel A. The scaling of iron in O and S containing gases [J]. Oxid. Met., 1975, 9: 401-408
[33] Danielewski M, Natesan K. Oxidation-sulfidation behavior of iron-chromium-nickel alloys [J]. Oxid. Met., 1977, 12: 227-245
[1] 魏征, 马保吉, 李龙, 刘潇枫, 李慧. 镁合金表面超声滚压预处理对微弧氧化膜耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[2] 刘晓, 王海, 朱忠亮, 李瑞涛, 陈震宇, 方旭东, 徐芳泓, 张乃强. 电站用奥氏体耐热钢HR3C与Sanicro25在超临界水中的氧化特性[J]. 中国腐蚀与防护学报, 2020, 40(6): 529-538.
[3] 谢冬柏, 洪昊, 王文, 彭晓, 多树旺. 模拟燃烧环境介质和温度对不锈钢表面氧化物形态的影响研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 358-366.
[4] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[5] 王廷勇, 董如意, 许实, 王辉. 石墨烯改性Ti/IrTaSnSb-G金属氧化物阳极在低温和低盐NaCl溶液中的电化学性能[J]. 中国腐蚀与防护学报, 2020, 40(3): 289-294.
[6] 方旭东, 刘晓, 徐芳泓, 李瑞涛, 朱忠亮, 张乃强. 超超临界电站国产奥氏体钢C-HRA-5在超临界水中的氧化特性[J]. 中国腐蚀与防护学报, 2020, 40(3): 266-272.
[7] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[8] 秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[9] 郑艳欣, 刘颖, 宋青松, 郑峰, 贾玉川, 韩培德. 含铁铜基陶瓷复合材料高温氧化行为与耐磨性研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[10] 范益,陈林恒,蔡佳兴,代芹芹,马宏驰,程学群. 热轧AH36船板钢在室内仓储条件下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[11] 徐勋虎,何翠群,向军淮,王玲,张洪华,郑晓冬. Co-20Re-25Cr-1Si合金在0.1 MPa纯O2中的高温氧化行为[J]. 中国腐蚀与防护学报, 2020, 40(1): 75-80.
[12] 姜冬雪,付颖,张峻巍,张伟,辛丽,朱圣龙,王福会. 钛合金表面Al2O3陶瓷膜制备及性能研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
[13] 王毅,张盾. 铋系可见光催化海洋防污材料研究进展[J]. 中国腐蚀与防护学报, 2019, 39(5): 375-386.
[14] 魏欣欣,张波,马秀良. FeCr15Ni15单晶600 ℃下热生长氧化膜的TEM观察[J]. 中国腐蚀与防护学报, 2019, 39(5): 417-422.
[15] 肖金涛,陈妍,邢明秀,鞠鹏飞,孟引根,王芳. 工艺参数对2195铝锂合金阳极氧化膜的耐蚀性影响[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.