Please wait a minute...
中国腐蚀与防护学报  2013, Vol. 33 Issue (4): 271-276    
  研究报告 本期目录 | 过刊浏览 |
阴极保护电位对Q235钢氢脆敏感性和力学性能的影响
文丽娟 高志明 刘洋洋 林 峰
天津大学材料科学与工程学院 天津市材料复合与功能化重点实验室 天津 300072
Effects of Applied Cathodic Potential on Susceptibility to Hydrogen Embrittlement and Mechanical Properties of Q235 Steel
WEN Lijuan, GAO Zhiming, LIU Yangyang, LIN Feng
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite & Functional Material, Tianjin University, Tianjin 300072, China
全文: PDF(2887 KB)  
摘要: 利用拉伸实验和显微硬度测试等方法研究了不同阴极保护电位对Q235钢在3.5%NaCl溶液中氢脆敏感性的影响,并用SEM对断口形貌进行分析。结果表明,随着阴极保护电位的负移,Q235钢的最大抗拉强度和屈服强度没有呈现规律性变化,但断面收缩率减小,材料发生氢脆的可能性加大。当施加电位为-1100 mV时,断口出现准解理断裂特征形貌。
关键词 Q235钢阴极保护电化学阻抗谱显微硬度    
Abstract:The hydrogen permeation characteristics of Q235 steel under different applied cathodic protection potential in 3.5%NaCl solution were investigated by using electrochemical, tensile and micro-hardness test. The fracture morphology was observed by scanning electron microscopy (SEM). When the cathodic potential shifted to the negative direction, there was no correlation between maximal tensile strength, yield strength, and hydrogen embrittlement, but the reduction of area decreased. When the polarization potential was -1100 mV, the micro-hardness increased significantly and the fracture morphology exhibited brittle fracture feature.
Key wordsQ235 steel    cathodic protection    EIS    micro-hardness
    
ZTFLH:  TG174.41  

引用本文:

文丽娟, 高志明, 刘洋洋, 林峰. 阴极保护电位对Q235钢氢脆敏感性和力学性能的影响[J]. 中国腐蚀与防护学报, 2013, 33(4): 271-276.
WEN Lijuan, GAO Zhiming, LIU Yangyang, LIN Feng. Effects of Applied Cathodic Potential on Susceptibility to Hydrogen Embrittlement and Mechanical Properties of Q235 Steel. Journal of Chinese Society for Corrosion and protection, 2013, 33(4): 271-276.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2013/V33/I4/271

[1] Meng C, Qu Z, Pang Q W. Parameters for cathodic protection of 1Cr18Ni9Ti cycling pump in power plant [J]. Corros. Prot., 2004, 25(11): 473-488
(孟超, 曲政, 庞其伟. 1Cr18Ni9Ti海水循环水泵阴极保护参数 [J]. 腐蚀与防护, 2004, 25(11): 473-488)
[2] Akonko S, Li D Y, Ziomek M. Effects of cathodic protection on corrosive wear of 304 stainless steel [J]. Tribol. Lett., 2005, 18(3): 405-410
[3] Eliassen S. New concept for cathodic protection of offshore pipelines to reduce hydrogen induced stress cracking (HISC) in high strength 13%Cr stainless steels [J]. Corros. Eng. Sci. Technol., 2004, 39(1): 31-37
[4] Zucchi F. Hydrogen embrittlement of duplex stainless steel under cathodic protection in acidic artificial sea water in the presence of sulphide ions [J]. Corros. Sci., 2006, 48: 522-530
[5] Wu J X, Fu Z G, Zhang P Q, et al. AC impedance characteristics of low alloy steels under cathodic protection and determination of the optimum protection potential [J]. J. Chin. Soc. Corros. Prot., 1989, 9(6): 160-164
(吴继勋, 傅争光, 张谱强等. 用交流阻抗技术确定船用钢的最佳阴极保护电位 [J]. 中国腐蚀与防护学报, 1989, 9(6): 160-164)
[6] Yang Z Y, Yan Y G, Ma L. Effect of cathodic polarization on the susceptibility to hydrogen embrittlement of 907 steel [J]. Corros. Prot., 2009, 30(10): 701-703
(杨兆艳, 闫永贵, 马力. 阴极极化对907钢氢脆敏感性的影响 [J]. 腐蚀与防护, 2009, 30(10): 701-703)
[7] Zhang G H, Gong M, Tang Q, et al. Electrochemical study on cathodic protection parameters of X80 pipeline steels [J]. Corros. Prot., 2011, 32(11): 868-883
(张国虎, 龚敏, 唐强等. 用电化学方法研究X80 管线钢的阴极保护参数 [J]. 腐蚀与防护, 2011, 32(11): 868-883)
[8] Chang E, Yan Y G, Li Q F, et al. Effects of cathodic polarization on the hydrogen embrittlement sensitivity of 921A steel in sea water[J]. J. Chin. Soc. Corros. Prot., 2010, 30(1):83-87
(嫦娥, 闫永贵, 李庆芬等. 阴极极化对921A钢海水中的氢脆敏感性的影响 [J]. 中国腐蚀与防护学报, 2010, 30(1): 83-87)
[9] Qiu K Y, Wei B M, Fang Y H. The cathodic protection and susceptibility of hydrogen embrittlement of 16Mn steel in 3% NaCl solution [J]. J. Nanjing Inst. Chem. Technol., 1992, 14(2): 8-14
(邱开元, 魏宝明, 方耀华. 16Mn钢在3%氯化钠水溶液中的阴极保护及其氢脆敏感性 [J]. 南京化工学院学报, 1992, 14(2): 8-14)
[10] Jang S, Han M, Kim S. Electrochemical characteristics of stainless steel using impressed current cathodic protection in seawater [J]. Trans. Nonferrous Met. Soc. China, 2009, 19(4): 930-934
[11] Baeckmann W V, Schwenk W, Prinz W. Translated by Hu S X, Wang X N, et al. Handbook of Cathodic Protection [M]. Beijing: Chemical Industry Press, 2005
(Baeckmann W V, Schwenk W, Prinz W著. 胡士信, 王向农等译. 阴极保护手册 [M]. 北京: 化学工业出版社, 2005)
[12] Zheng S Q, Qi Y M, Chen C F, et al. Effect of hydrogen and inclusions on the tensile properties and fracture behavior of A350LF2 steels after exposure to wet H2S environments [J]. Corros. Sci., 2012, 60: 59-68
[13] Li M C, Lin H C, Cao C N. Study on soil erosion of carbon steel by electrochemical impedance spectroscopy [J]. J. Chin. Soc. Corros. Prot., 2000, 20(2): 111-117
(李谋成, 林海潮, 曹楚南. 碳钢在土壤中腐蚀的电化学阻抗谱特征 [J]. 中国腐蚀与防护学报, 2000, 20(2): 111-117)
[14] Cao C N, Zhang J Q. Introduction of Electrochemical Impedance Spectroscope [M]. Beijing: Science Press, 2002
(曹楚南, 张鉴清. 电化学阻抗谱导论[M](第二版). 北京: 科学出版社, 2002)
[15] Xu H B, Wang T Y, Wang Y Z, et al. A laboratory evaluation technology for determination of cathodic protection parameters of 16Mn steel in soil [J]. Corros. Sci. Prot. Technol., 2006, 18(6): 404-409
(徐海波, 王廷勇, 王远志等. 16Mn钢在土壤中的阴极保护参数实验室评价技术研究 [J]. 腐蚀科学与防护技术, 2006, 18(6): 404-409)
[16] Kim S J, Okido M, Moon K M. Electrochemical study of cathodic protection of steel used for marine structures [J]. Korean J. Chem. Eng., 2003, 20(3): 560-56
[1] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[2] 戴明杰, 刘静, 黄峰, 胡骞, 李爽. 基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[3] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[4] 梁毅, 杜艳霞. 交流干扰和阴极保护协同作用下的腐蚀评判标准与机理研究进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[5] 解璇, 刘莉, 王福会. TiO2的制备及表面修饰工艺对其光电化学阴极保护性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 123-130.
[6] 赵书彦,童鑫红,刘福春,翁金钰,韩恩厚,郦晓慧,杨林. 环氧富锌涂层防腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 563-570.
[7] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[8] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[9] 王贵容,邵亚薇,王艳秋,孟国哲,刘斌. 阴极保护电位对破损环氧涂层阴极剥离的影响[J]. 中国腐蚀与防护学报, 2019, 39(3): 235-244.
[10] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[11] 廖彤,马峥,李蕾蕾,马秀敏,王秀通,侯保荣. Fe2O3/TiO2纳米复合材料对304不锈钢的光生阴极保护性能[J]. 中国腐蚀与防护学报, 2019, 39(1): 36-42.
[12] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[13] 张志英, 汤迦南, 余杰, 王旭东, 黄罗超, 邹俊文, 唐浩, 张继康, 陈亚涛, 程东鹏. 铜基非晶合金复合材料在NaCl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 478-486.
[14] 邓三喜, 闫小宇, 柴柯, 吴进怡, 史洪微. 假单胞菌对聚硅氧烷树脂清漆涂层分解及防腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
[15] 曹海娇, 魏英华, 赵洪涛, 吕晨曦, 毛耀宗, 李京. Q345钢预热时间对熔结环氧粉末涂层防护性能的影响II:涂层体系失效行为分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.