Please wait a minute...
中国腐蚀与防护学报  2013, Vol. 33 Issue (3): 216-220    
  本期目录 | 过刊浏览 |
尿素对土壤中Q235钢腐蚀的影响
李喜明1 金 哲2 刘五铸3 孙 成1 张洪伟2 许 进1 闫茂成1 于长坤1 王振尧1
1. 中国科学院金属研究所 金属腐蚀与防护国家重点实验室 沈阳 110016;
2. 中国石油管道沈阳技术分公司 沈阳 110031;
3. 中国石油天然气股份有限公司辽阳石化分公司机动设备处 辽阳 111003
Effects of Urea on Corrosion Behavior of Q235 Steel in Soil
LI Ximing1, JIN Zhe2, LIU Wuzhu3, SUN Cheng1, ZHANG Hongwei2, XU Jin1,
YAN Maocheng1, YU Changkun1, WANG Zhenyao1
1. State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China;
2. Shenyang Technology Branch Office, PetroChina, Shengyang 110031, China;
3. Mobile Equipment Office, Liaoyang Petrochemical Company, PetroChina, Liaoyang 111003, China
全文: PDF(2063 KB)  
摘要: 利用电化学阻抗(EIS)和极化曲线等测试技术在湿度为30%的土壤中,研究了浓度为0.1%(质量分数)的氮肥尿素对碳钢腐蚀行为的影响。结果表明,实验初期尿素吸附在试样表面,阻抗谱呈现一个时间常数,且出现感抗。随着埋放时间的延长,尿素分解产生NH3,土壤pH值减小。碳钢的自腐蚀电位随时间正移,腐蚀速率降低。后期阻抗谱上出现Warburg扩散,表明腐蚀过程受扩散控制。
关键词 碳钢尿素电化学阻抗(EIS)
中图分类号:TG172.4
文献标识码:A文章编号:1005-4537(2013)03-0216-05    
Abstract:The effect of urea (0.1%, mass fraction) on corrosion of Q235 steel in soil with humidity of 30% was investigated by electrochemical impendence spectroscopy (EIS) and polarization curve. At the initial experiment period, urea was adsorbed on the surface of carbon steel, and one time constant with an inductive reactance arc appeared in the EIS. Along with the time, urea was decomposed into ammonia, hence pH decreased. The potential of carbon steel increased and its corrosion rate decreased over experiment time. Warburg impedance was found at the later stage, which indicated that the process was controlled by concentration polarization.
Key wordscarbon steel    urea    EIS
    

引用本文:

李喜明 金 哲 刘五铸 孙 成 张洪伟 许 进 闫茂成 于长坤 王振尧. 尿素对土壤中Q235钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2013, 33(3): 216-220.
. Effects of Urea on Corrosion Behavior of Q235 Steel in Soil. Journal of Chinese Society for Corrosion and protection, 2013, 33(3): 216-220.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2013/V33/I3/216

[1] Chaker V, Palmer J D. Effects of Soil Characteristics on Corrosion [M]. Ann Arbor: Am. Soc. Testing Meter., 1916: 95-106
[2] Benmoussa A, Hadjel M, Traisnel M. Corrosion behavior of api 5l x-60 pipeline steel exposed to near-neutral ph soil simulating solution [J]. Mater. Corros., 2006, 57(10): 771-777
[3] Ismail A I M, El-Shamy A M. Engineering behaviour of soil materials on the corrosion of mild steel [J]. Appl. Clay Sci., 2009, 42(3-4): 356-362
[4] Liu T M, Wu Y H, Luo S X, et al. Effect of soil compositions on the electrochemical corrosion behavior of carbon steel in simulated soil solution [J]. Mat.-wiss. u. Werkstofftech., 2010, 41(4): 228-233
[5] Ferreira C A M, Ponciano J A C, Vaitsman D S, et al. Evaluation of the corrosivity of the soil through its chemical composition [J]. Sci. Total Environ., 2007, 388(1-3): 250-255
[6] Collins H H, Padley T J. Protection of spun ductile iron pipes against corrosion by soils [A]. 5th International Conference on the Internal External Protection of Pipes [C]. Insbruck: 1983
[7] Mozheiko F F, Potkina T N, Goncharik I I. Effect of inhibitors on corrosion resistance of carbon steel in suspensed liquid combined fertilizer [J]. Rus. J. Appl. Chem., 2008, 81(9): 1705-1709
[8] Li Y, Zhang T, Wang F H. Corrosion behavior of AZ91D magnesium alloy in hand sweat. II Inhibiting mechanism of urea on magnesium alloy AZ91D in hand sweat [J]. J. Chin. Soc. Corros. Prot., 2004, 24(6): 334-339
(李瑛, 张涛, 王福会. AZ91D镁合金手汗腐蚀机理研究. II 手汗液中尿素对AZ91D腐蚀的缓蚀机制 [J]. 中国腐蚀与防护学报, 2004, 24(6): 334-339)
[9] Zhang J Q, Cao C N. Introduction of Electrochmical Impedance Spectroscopy [M]. Beijing: Science Press, 2002
(张鉴清, 曹楚南. 电化学阻抗谱导论 [M]. 北京: 科学出版社, 2002)
[1] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[2] 田龙标,朱志平,张春雷,喻强,杨磊. 尿素对燃煤电厂水冷壁管15CrMo钢腐蚀特性研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 114-122.
[3] 许萍,张硕,司帅,张雅君,汪长征. EPS的主要成分-蛋白质、多糖抑制碳钢腐蚀机理研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 176-184.
[4] 钟显康,扈俊颖. 恒定的pH值和Fe2+浓度下X65碳钢的CO2腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(6): 573-578.
[5] 王力, 郭春云, 肖葵, 吐尔逊·斯拉依丁, 董超芳, 李晓刚. Q235和Q450钢在吐鲁番干热大气环境中长周期暴晒时的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.
[6] 乔越, 朱志平, 杨磊, 刘志峰. 高温状态下锅炉给水氧化还原电位监测与模拟实验研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 487-494.
[7] 彭晚军, 丁纪恒, 陈浩, 余海斌. 生物基缓蚀剂糠醇缩水甘油醚的缓蚀性能及机理[J]. 中国腐蚀与防护学报, 2018, 38(3): 303-308.
[8] 钱备, 刘成宝, 宋祖伟, 任俊锋. 纳米容器改性环氧涂层对Q235碳钢的防腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 133-139.
[9] 偶国富, 赵露露, 王凯, 王宽心, 金浩哲. 10#碳钢在HCl-H2O环境中的露点腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 33-38.
[10] 张杰, 胡秀华, 郑传波, 段继周, 侯保荣. 海洋微藻环境中钙质层对Q235碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[11] 孟晓波,蒋武斌,廖永力,李锐海,郑志军,高岩. 输电杆塔材料在模拟工业环境中的大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 460-466.
[12] 程庆利,陶彬,刘栓,刘全桢,张卫华,田松柏,王立平. 原油沉积水对Q235B碳钢的腐蚀影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 126-134.
[13] 郝永胜,Luqman Abdullahi SANI,宋立新,徐国宝,葛铁军,方庆红. 中性和酸性溶液中Q235碳钢表面沉积植酸转化膜的耐蚀行为研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 549-558.
[14] 王吉会,闫华杰,胡文彬. 钼酸盐插层锌铝铈水滑石的制备与缓蚀性能研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 637-644.
[15] 刘宏伟,熊福平,吕亚林,葛承宣,刘宏芳,胡裕龙. 动态条件下十二胺对Q235碳钢CO2腐蚀的缓蚀行为研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 645-651.