Please wait a minute...
中国腐蚀与防护学报  2012, Vol. 32 Issue (2): 168-172    
  研究报告 本期目录 | 过刊浏览 |
盐酸介质中1-丙基-2-甲基-3-烷基苯并咪唑盐对Q235钢的缓蚀作用
李相旭,杨文忠
南京工业大学理学院 南京 210009
INHIBITION OF 1-PROPYL-2-METHYL-3-ALKYL BENZIMIDAZOLE ON Q235 STEEL IN HCl SOLUTION
LI Xiangxu, YANG Wenzhong
College of Science, Nanjing University of Technology, Nanjing 210009
全文: PDF(750 KB)  
摘要: 合成了不同烷基链长的1-丙基-2-甲基-3-烷基苯并咪唑盐,通过动电位极化曲线、电化学阻抗谱和扫描电镜等方法研究其对Q235钢在1 mol/LHCl中的缓蚀作用。结果表明,1-丙基-2-甲基-3-烷基苯并咪唑盐对Q235钢在盐酸溶液中具有优异的缓蚀性能,其中1-丙基-2-甲基-3-十四烷基苯并咪唑盐的缓蚀性能最好,当浓度达到10mg/L时缓蚀率达98.6%,是以阴极型为主的混合型缓蚀剂。
关键词 缓蚀剂苯并咪唑极化电化学阻抗谱    
Abstract:ANew corrosion inhibitors 1-propyl-2-methyl-3-alkyl benzimidazole salts were synthesized and their inhibition for Q235 steel in 1 mol/L HCl solution were investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Meanwhile, the surface morphology was studied by scanning electron microscopy(SEM). The results showed that benzimidazole salts had excellent inhibiting efficiency at very low concentration and the inhibiting efficiency increased with the increase of alkyl chain. 1-propyl-2-methyl-3-tetradecyl benzimidazole salts had the highest efficiency among four inhibitors, in which the inhibition efficiency reached up to 98.6% at the concentration of 10 mg/L. These inhibitors acted as mixed inhibitors with cathodic inhibition as dominative action.
Key wordsinhibitor    benzimidazole    polarization    electrochemical impedance spectrum
收稿日期: 2011-01-18     
ZTFLH: 

TG174.42

 
通讯作者: 杨文忠     E-mail: yangwz@njut.edu.cn
Corresponding author: YANG Wenzhong     E-mail: yangwz@njut.edu.cn
作者简介: 李相旭,男,1984年生,硕士生,研究方向为金属腐蚀与防护及水处理

引用本文:

李相旭,杨文忠. 盐酸介质中1-丙基-2-甲基-3-烷基苯并咪唑盐对Q235钢的缓蚀作用[J]. 中国腐蚀与防护学报, 2012, 32(2): 168-172.
LI Xiang-Xu, YANG Wen-Zhong. INHIBITION OF 1-PROPYL-2-METHYL-3-ALKYL BENZIMIDAZOLE ON Q235 STEEL IN HCl SOLUTION. J Chin Soc Corr Pro, 2012, 32(2): 168-172.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2012/V32/I2/168

[1] Zhou X X, Liu J P. Present state of the application of corrosion inhibitors to acid pickling and its development trend[J].Industr. Water Treatment, 2002, 22(1): 16-19

    (周晓湘, 刘建平.酸洗缓蚀剂的应用研究现状及发展趋势[J]. 工业水处理, 2002, 22(1):16-19)

[2] Zhang S T, Xue M Y, Wang Y B, et al. Study on covering behavior of BTA inhibitor on pure copper surface[J]. Corros. Sci.Prot. Technol., 2006, 18(5): 313-316

    (张胜涛, 薛名月,王艳波等.苯并三氮唑在铜表面覆盖行为的研究[J]. 腐蚀科学与防护技术,2006, 18(5): 313-316)

[3] Zhao W, Zhang J P, Yin C X, et al. Corrosion inhibition mechanism of benzotriaole derivatives for N80 steel in HCl solution [J]. Corros. Sci. Prot. Technol., 2007, 19(4): 251-254

    (赵雯,张军平, 尹成先等. 盐酸介质中苯并三氮唑衍生物的缓蚀机理研究[J].腐蚀科学与防护技术, 2007, 19(4): 251-254)

[4] Raicheva S N, Aleksiev B V, Sokolova E I. The effect of the chemical structure of some nitrogen and sulphur containing organic compounds on their corrosion inhibiting action [J]. Corros.Sci., 1992, (2): 343-350

[5] Khaled K F. The inhibition of benzimidazole derivatives on corrosion of iron in 1 M HCl solutions [J]. Electrochim. Acta, 2003,48: 2493-2503

[6] Shi Z L, Pang Z Z. Efficiency of arylsubstituted-benz-imidazoles as copper corrosion inhibitors in HCl solution [J]. J. Beijing Univ. Chem. Technol., 2002, 29(2):52-54

    (史志龙, 庞正智. 新型铜酸洗缓蚀剂烷基苯并咪唑的研究[J].北京化工大学学报, 2002, 29 (2): 52-54)

[7] Ashassi-Sorkhabi H, Majidi M R, Seyyedi K. Investigation of inhibition effect of some amino acids against steel corrosion in HCl solution [J]. Appl. Surf. Sci., 2004, 225: 176-185

[8] Solmaz R, Kardas G, Yazici B, et al. Adsorption and corrosion inhibitive properties of 2-amino-5-mercapto-1, 3, 4-thiadiazole on mild steel in hydrochloric acid media [J]. Colloids Surf. A: Physicochem. Eng. Aspects, 2008, 312: 7-17

[9] Aljourani J, Raeissi K, Golozar M A. Benzimidazole and its derivatives as corrosion inhibitors for mild steel in 1 mol/L HCl solution [J]. Corros. Sci., 2009, 51: 1836-1843
[1] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] 王亚婷, 王棵旭, 高鹏翔, 刘冉, 赵地顺, 翟建华, 屈冠伟. 淀粉接枝共聚物对Zn的缓蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[4] 李子运, 王贵, 罗思维, 邓培昌, 胡杰珍, 邓俊豪, 徐敬明. 热带海洋大气环境中EH36船板钢早期腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 463-468.
[5] 周宇, 张海兵, 杜敏, 马力. 模拟深海环境中阴极极化对1000 MPa级高强钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 409-415.
[6] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[7] 邵明鲁, 刘德新, 朱彤宇, 廖碧朝. 乌洛托品季铵盐缓蚀剂的合成与复配研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[8] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[9] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[10] 孙硕, 杨杰, 钱薪竹, 常人丽. Ni-Cr-P化学镀层的制备与电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[11] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[12] 张天翼,柳伟,范玥铭,李世民,董宝军,BANTHUKUL Wongpat,CHOWWANONTHAPUNYA Thee. 海洋大气环境Cu/Ni协同作用对低合金钢耐蚀性影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 511-518.
[13] 王标,杜楠,张浩,王帅星,赵晴. 304不锈钢点蚀产物对亚稳态点蚀萌生和稳态蚀孔生长的加速作用[J]. 中国腐蚀与防护学报, 2019, 39(4): 338-344.
[14] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[15] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.