Please wait a minute...
中国腐蚀与防护学报  2011, Vol. 31 Issue (6): 414-418    
  研究报告 本期目录 | 过刊浏览 |
新型细晶Ni3Al涂层的高温氧化行为
李明菲1,2,3,彭晓2,王福会1,2
1. 哈尔滨工程大学材料科学与化学工程学院 哈尔滨 500001
2.中国科学院金属研究所金属腐蚀与防护国家重点实验室 沈阳 110016
3. 中国石油管道科技研究院 廊坊 065001
HIGH TEMPERATURE OXIDATION BEHAVIOR OF A NOVEL FINE-GRAINED Ni3Al COATING
LI Mingfei1,2,3, PENG Xiao2, WANG Fuhui1,2
1. College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001
2. State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
3. PetroChina Pipeline R & D Center, Langfang 065001
全文: PDF(2278 KB)  
摘要: 采用Ni和Al颗粒复合电沉积与后续真空退火的方法,分别于600℃和 800℃退火温度下制备了两种新型细晶Ni3Al涂层。与粗晶合金相比,经1000℃氧化20 h后,合金的氧化层发生大面积剥落,而两种涂层的氧化膜粘附性佳,其主要原因为细晶涂层内的大量晶界促进Al 向氧化前沿的扩散,从而抑制了氧化膜/基体界面处“Kirkendall”孔洞的形成与长大。同时发现,800℃退火涂层氧化膜结构由外至内分别为NiO/NiAl2O4/Al2O3,而600℃退火涂层仅生成NiAl2O4与Al2O3,对该原因进行了探讨。
关键词 氧化细晶复合电沉积退火孔洞    
Abstract:Fine-grained γ'-Ni3Al coatings were developed by a two-step process: co-electrodeposition of Ni with Al particles and subsequent annealing in vacuum at 600℃ or 800℃. After oxidation at 1000℃ in air for 20 h, the scales formed on both coatings exhibited better adhesion than that on a coarse-grained Ni3Al alloy, because the fine-grained coating structure suppressed the formation of voids at the scale/metal interface. Moreover, the scale formed on the coating by annealing at 800℃ consisted of NiO, NiAl2O4 and Al2O3, while the scale on the coating by annealing at 600℃ consisted of NiAl2O4 and Al2O3. The reason for this result is related to that the latter coating had a finer-grained structure, which promoted rapid formation of a continuum layer of Al2O3.
Key wordsoxidation    microcrystalline    co-electrodeposition    annealing    pores
收稿日期: 2010-09-13     
ZTFLH: 

TG172

 
通讯作者: 李明菲     E-mail: mfli@imr.ac.cn
Corresponding author: LI Mingfei     E-mail: mfli@imr.ac.cn
作者简介: 李明菲,女,1982年生,博士生,研究方向为材料腐蚀与防护

引用本文:

李明菲,彭晓,王福会. 新型细晶Ni3Al涂层的高温氧化行为[J]. 中国腐蚀与防护学报, 2011, 31(6): 414-418.
LI Meng-Fei, PENG Xiao, YU Fu-Hui. HIGH TEMPERATURE OXIDATION BEHAVIOR OF A NOVEL FINE-GRAINED Ni3Al COATING. J Chin Soc Corr Pro, 2011, 31(6): 414-418.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2011/V31/I6/414

[1] Deevi S C, Sikka V K. Nickel and iron aluminides: An overview on properties, processing, and applications[J].Intermetallics, 1996, 4: 357-375

[2] Kuenzly J D, Douglass D L. Oxidation mechanism of Ni3Al containing yttrium[J]. Oxid. Met., 1974, 8: 139-178

[3] Taniguchi S, Shibata T, Tsuruoka H. Isothermal oxidation behavior of Ni3Al-0.1B base alloys containing Ti, Zr, or Hf additions[J]. Oxid. Met., 1986, 26: 1-17

[4] Choi S C, Cho H J, Kim Y J, et al. High-temperature oxidation behavior of pure Ni3Al[J]. Oxid.  Met., 1996, 46:51-72

[5] Wang F H. Oxidation resistance of sputtered Ni3(AlCr) nanocrystalline coating[J]. Oxid. Met., 1997, 47: 247-258

[6] Xu C, Peng X, Wang F. Cyclic oxidation of an ultrafine-grained and CeO2-dispersed delta-Ni2Al3 coating[J]. Corros. Sci., 2010, 52: 740-747

[7] Susan D F, Misiolek W Z, Marder A R. Reaction synthesis of Ni-Al-based particle composite coatings[J]. Metall. Mater. Trans.,2001, 32A: 379-390

[8] Liu H F, Chen W X. Reactive oxide-dispersed Ni3Al intermetallic coatings by sediment co-deposition[J]. Intermetallics,2005, 13: 805-817

[9] Yang X, Peng X, Wang F. Effect of annealing treatment on the oxidation of an electrodeposited alumina-forming Ni-Al nanocomposite[J]. Corros. Sci., 2008, 50: 3227-3232

[10] Yang X, Peng X, Wang F. Size effect of Al particles on the structure and oxidation of Ni/Ni3Al composites transformed from electrodeposited Ni-Al films[J]. Scr. Mater., 2007, 56: 509-512

[11] Peng X, Ping D H, Li T F, er al. Oxidation behavior of a Ni-La2O3 codeposited film on nickel[J]. J. Electrochem.Soc., 1998, 145: 389-398

[12] Raineri V, Saggio M, Rimini E. Voids in silicon by He implantation: From basic to applications[J]. J. Mater. Res., 2000,15: 1449-1477

[13] Zinkle S J, Seitzman L E, Wolfer W G. Stability of vacancy clusters in metals.1. energy calculations for pure metals[J]. Philos. Mag., 1987, 55: 111-124

[14] Hart E W. On the role of dislocations in bulk diffusion[J]. Acta Metall, 1957, 5: 597-608

[15] Janssen M M P. Diffusion in nickel-rich part of Ni-Al system at 1000 degrees to 1300 degrees C-Ni3Al layer growth, diffusion-coefficients, and interface concentrations[J]. Metall.Trans., 1973, 4: 1623-1650

[16] Pint B A. On the formation of interfacial and internal voids in alpha-Al2O3 scales[J]. Oxi. Met., 1997, 48:303-328\par
[1] 魏征, 马保吉, 李龙, 刘潇枫, 李慧. 镁合金表面超声滚压预处理对微弧氧化膜耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[2] 刘晓, 王海, 朱忠亮, 李瑞涛, 陈震宇, 方旭东, 徐芳泓, 张乃强. 电站用奥氏体耐热钢HR3C与Sanicro25在超临界水中的氧化特性[J]. 中国腐蚀与防护学报, 2020, 40(6): 529-538.
[3] 谢冬柏, 洪昊, 王文, 彭晓, 多树旺. 模拟燃烧环境介质和温度对不锈钢表面氧化物形态的影响研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 358-366.
[4] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[5] 王廷勇, 董如意, 许实, 王辉. 石墨烯改性Ti/IrTaSnSb-G金属氧化物阳极在低温和低盐NaCl溶液中的电化学性能[J]. 中国腐蚀与防护学报, 2020, 40(3): 289-294.
[6] 方旭东, 刘晓, 徐芳泓, 李瑞涛, 朱忠亮, 张乃强. 超超临界电站国产奥氏体钢C-HRA-5在超临界水中的氧化特性[J]. 中国腐蚀与防护学报, 2020, 40(3): 266-272.
[7] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[8] 秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[9] 郑艳欣, 刘颖, 宋青松, 郑峰, 贾玉川, 韩培德. 含铁铜基陶瓷复合材料高温氧化行为与耐磨性研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[10] 范益,陈林恒,蔡佳兴,代芹芹,马宏驰,程学群. 热轧AH36船板钢在室内仓储条件下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[11] 徐勋虎,何翠群,向军淮,王玲,张洪华,郑晓冬. Co-20Re-25Cr-1Si合金在0.1 MPa纯O2中的高温氧化行为[J]. 中国腐蚀与防护学报, 2020, 40(1): 75-80.
[12] 姜冬雪,付颖,张峻巍,张伟,辛丽,朱圣龙,王福会. 钛合金表面Al2O3陶瓷膜制备及性能研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
[13] 王毅,张盾. 铋系可见光催化海洋防污材料研究进展[J]. 中国腐蚀与防护学报, 2019, 39(5): 375-386.
[14] 魏欣欣,张波,马秀良. FeCr15Ni15单晶600 ℃下热生长氧化膜的TEM观察[J]. 中国腐蚀与防护学报, 2019, 39(5): 417-422.
[15] 肖金涛,陈妍,邢明秀,鞠鹏飞,孟引根,王芳. 工艺参数对2195铝锂合金阳极氧化膜的耐蚀性影响[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.