Please wait a minute...
中国腐蚀与防护学报  2010, Vol. 30 Issue (6): 421-426    
  研究报告 本期目录 | 过刊浏览 |
氮、铌添加对304奥氏体不锈钢电化学腐蚀行为的影响
孙涛,邓博, 徐菊良,李劲,蒋益明
复旦大学材料科学系 上海 200433
INFLUENCE OF NIOBIUM AND NITROGEN ON THE RESISTANCE TO PITTING AND INTERGRANULAR CORROSION OF 304 AUSTENITIC STAINLESS STEEL
SUN Tao, DENG Bo, XU Juliang, LI Jin, JIANG Yiming
Department of Materials Science, Fudan University, Shanghai 200433
全文: PDF(1640 KB)  
摘要: 采用极化曲线和电化学动电位再活化技术(EPR)研究了不同含量氮(N)、铌(Nb)元素的添加对304奥氏体不锈钢的耐点蚀和耐晶间腐蚀性能的影响。结果表明:N元素的添加可以显著提高材料的耐点蚀性能,但对于晶间腐蚀性能的影响却有不同的机制。少量的N会降低材料的耐晶间腐蚀性能,但含量增加到0.2%时,却可以提高耐晶间腐蚀性能;Nb元素的添加会明显增加材料的耐晶间腐蚀性能,但会降低其耐点蚀性能。基于以上结果,确定了N和Nb添加的最佳含量,并给出上述微量元素改变材料耐腐蚀性能的作用机制。
关键词 304奥氏体不锈钢点蚀晶间腐蚀    
Abstract:The 304 austenitic stainless steels with the different doped content of nitrogen (N) and niobium (Nb), have been tested separately using potentiodynamic polarization curve scanning and electrochemical potentiodynamic reactivation method (EPR). The resistance to pitting corrosion of the specimens was evaluated by the pitting potential (Eb), and the reactivation rate reflected the resistance to intergranular corrosion. The experiment results showed that the resistance to pitting corrosion of the 304 austenitic stainless steels has been obviously improved by the rising doped content of N. It was also observed that when there is a little doped content of N, the resistance to intergranular corrosion suffered a negative influence, but with the increasing amount of N(above 0.2%), the bad effect for specimen resistance to intergranular corrosion disappeared. The Nb doping played a positive role in the specimen resistance to intergranular corrosion but a negative role in resistance to pitting corrosion. Based on the results above, a proper doped content of Nb and N was given, and the mechanism of the influence on the anticorrosion performance of the stainless steel caused by the microalloying was discussed.
Key words304 austenitic stainless steel    nitrogen    niobium    pitting corrosion    intergranular corrosion
收稿日期: 2009-10-16     
ZTFLH: 

TG174.36

 
基金资助:

国家自然科学基金项目(50871031,50701010)和上海市科委专项基金(09ZR140Z600,09JC1401600)资助

通讯作者: 蒋益明     E-mail: ymjiang@fudan.edu.cn
Corresponding author: JIANG Yiming     E-mail: ymjiang@fudan.edu.cn
作者简介: 孙涛,1986年生,男,硕士生,研究方向为不锈钢的局部腐蚀

引用本文:

孙涛,邓博, 徐菊良,李劲,蒋益明. 氮、铌添加对304奥氏体不锈钢电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2010, 30(6): 421-426.
XUN Shou, LI Jin, DENG Bo, XU Ju-Liang, JIANG Yi-Meng. INFLUENCE OF NIOBIUM AND NITROGEN ON THE RESISTANCE TO PITTING AND INTERGRANULAR CORROSION OF 304 AUSTENITIC STAINLESS STEEL. J Chin Soc Corr Pro, 2010, 30(6): 421-426.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2010/V30/I6/421

[1] Tian H. Chromizing subsequent solid solution nitriding multiple process of 304 stainless steel [J]. Heat Treat. Technol. Equip., 2006, 27(4): 20-23

    (田华. 304不锈钢渗铬固溶渗氮复合处理工艺研究 [J]. 热处理技术与装备, 2006, 27(4): 20-23)

[2] Piekarski B. Effect of Nb and Ti additions on microstructure, and identification of precipitates in stabilized Ni-Cr cast austenitic steels [J]. Mater. Charact., 2001, 47: 181-186

[3] Jin Z Y. The electrochemical behavior and composition depth-profiles of the passive film of ferritic stainless steel [J]. J. Chin. Soc.Corros. Prot.,1985, 5(1): 46-53

    (金镇源. 含铌铁素体不锈钢的电化学行为和钝化膜中各元素的分布 [J]. 中国腐蚀与防护学报, 1985, 5(1): 46-53)

[4] Yuan Z Z, Dai Q X, Chen X N, et al. Effects of nitrogen in austenitic stainless steels [J]. J. Jiangsu Univ. (Nat. Sci.), 2002, 23(3): 72-75

    (袁志钟, 戴起勋, 程晓农等. 氮在奥氏体不锈钢中的作用 [J]. 江苏大学学报(自然科学版), 2002, 23(3): 72-75)

[5] Gui L F, Wu M D, Zhao Y. Handbook of Material Testing for Mechanical Engineering [M]. Shenyang: Liaoning Science and Technology Publishing House 2002. 201-205

    (桂立丰, 吴民达, 赵源. 机械工程材料测试手册 [M]. 沈阳: 辽宁科学技术出版社, 2002. 201-205)

[6] Yu Q B, Sun Y, Li Z L, et al. Effect of micro Nb solutioned in steel [J]. Iron Steel, 2006, 41(2): 59-62

    (于庆波, 孙莹, 李子林等. 微量固溶Nb在钢中的作用 [J]. 钢铁,2006, 41(2): 59-62)

[7] Yan H T, Bi H Y, Li X, et al. Microstructure and texture of Nb+Ti stabilized ferritic stainless steel [J]. Mater. Charact., 2008, 59:174-1746

[8] Yan H T, Bi H Y, Li X, et al. Effect of two-step cold rolling and annealing on texture, grain boundary character distribution and r-value of Nb+Ti stabilized ferritic stainless steel [J]. Mater. Charact., 2009, 60: 65-68

[9] Yan H T, Bi H Y, Li X, et al. Precipitation and mechanical properties of Nb-modified ferritic stainless steel during isothermal aging [J]. Mater. Charact., 2009, 60: 204-209

[10] Wang H T, Zhao J M, Zuo Y. The effects of some anions on metastable pitting of 316L stainless steel [J]. J. Chin. Soc.Corros. Prot., 2002, 22(4): 202-206

     (王海涛, 赵景茂, 左禹. 几种阴离子对316L不锈钢亚稳态孔蚀行为的影响 [J]. 中国腐蚀与防护学报, 2002, 22(4): 202-206)

[11] Deng B, Jiang Y M, Hao R W, et al. Synergetic effect of fluoride and chloride on the critical pitting temperature of 316 stainless steel [J]. J. Chin. Soc. Corros. Prot., 2008, 28(1): 30-33

     (邓博, 蒋益明, 郝允卫等. F-和Cl-对316不锈钢临界点蚀温度的协同作用 [J]. 中国腐蚀与防护学报, 2008, 28(1): 30-33)

[12] Wu W W, Jiang Y M, Liao J X, et al. Influence of Cl- on critical pitting temperature for 304 and 316 stainless steel [J]. Corros. Sci. Prot. Technol., 2007, 19(1): 16-19

     (吴玮巍, 蒋益明, 廖家兴等. Cl离子对304、316不锈钢临界点蚀温度的影响 [J]. 腐蚀科学与防护技术, 2007, 19(1): 16-19)

[13] Li D G, Chen D R, Feng Y R. Investigation on the composition and semi-conductive property of the passive film on 22Cr duplex stainless steel [J]. Acta Chim. Sin., 2008, 66(21): 2329-2335

     (李党国, 陈大融, 冯耀荣. 22Cr双相不锈钢钝化膜组成及其半导体性能研究 [J]. 化学学报2008, 66(21): 2329-2335)

[14] Xu C C, Gang Y Y. Influence of N content on corrosion resistance of high-purity austenitic stainless steel and its mechanism research [J]. J. Iron Steel Res., 1996, 08(suppl.): 20-25

     (许崇臣, 冈毅民. 氮含量对高纯奥氏体不锈钢耐蚀性能的影响及机理的研究 [J]. 钢铁研究学报, 1996, 08(增刊): 20-25)

[15] Briant C L. A comparison between grain-boundary chromium depletion in austenitic stainless-steel and corrosion in the modified strauss test [J]. Corrosion, 1986, 42: 523

[16] Mozhi T A, Betrabet H S, Jagannathan V, et al. Thermodynamic modeling of sensitization of AISI 304 stainless steels containing nitrogen [J]. Scr. Metall., 1986, 20(5): 723-728

[17] Wang J, Kang X F. Effect of nitrogen on corrosion resistance and sensitization behavior of 316L austenitic stainless steel [J]. J. Iron Steel Res.,1993, 05(suppl.): 56-64

     (王俊, 康喜范. 氮对316L奥氏体不锈钢耐腐蚀性影响及其敏华行为的研究 [J]. 钢铁研究学报, 1993, 05(增刊): 56-64)
 
[1] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[3] 卢爽, 任正博, 谢锦印, 刘琳. 2-氨基苯并噻唑与苯并三氮唑复配体系对Cu的缓蚀性能[J]. 中国腐蚀与防护学报, 2020, 40(6): 577-584.
[4] 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[5] 戴明杰, 刘静, 黄峰, 胡骞, 李爽. 基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[6] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[7] 贺三, 孙银娟, 张志浩, 成杰, 邱云鹏, 高超洋. 20#钢在含饱和CO2的离子液体醇胺溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[8] 李清, 张德平, 王薇, 吴伟, 卢琳, 艾池. L80油管钢实际腐蚀状况评估及室内电化学和应力腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[9] 郏义征, 王保杰, 赵明君, 许道奎. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[10] 王海卫, 常森, 栾新刚, 宋雪梅, 王稹, 李彦樟, 陈建利, 张计荣, 韩明, 丘丹圭. 纳米Al2O3改性SiBCN陶瓷高温粘接剂的制备与性能研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 367-372.
[11] 何壮,王兴平,刘子涵,盛耀权,米梦芯,陈琳,张岩,李宇春. 316L和HR-2不锈钢在盐酸液膜环境中的钝化与点蚀[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[12] 苏小红,胡会娥,孔小东. W颗粒/Zr41.2Ti13.8Cu12.5Ni10Be22.5基非晶复合材料在3%NaCl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[13] 王标,杜楠,张浩,王帅星,赵晴. 304不锈钢点蚀产物对亚稳态点蚀萌生和稳态蚀孔生长的加速作用[J]. 中国腐蚀与防护学报, 2019, 39(4): 338-344.
[14] 李雨,关蕾,王冠,张波,柯伟. 机械应力对不锈钢点蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(3): 215-226.
[15] 刘辉,邱玮,冷滨,俞国军. 304和316H不锈钢在LiF-NaF-KF熔盐中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 51-58.