Please wait a minute...
中国腐蚀与防护学报  2009, Vol. 29 Issue (6): 504-508    
  研究报告 本期目录 | 过刊浏览 |
有/无应力下LY12CZ铝合金点蚀数据的关联规律
仝基斌1;饶思贤1;朱立群2;钟群鹏2
1. 安徽工业大学机械工程学院 马鞍山 243001
2. 北京航空航天大学材料科学与工程学院 北京 100083
CORRELATION BETWEEN THE PITTING DEPTH OF LY12CZ WITH OR WITHOUT STRESS
TONG Jibin1; RAO Sixian1; ZHU Liqun2; ZHONG Qunpeng2
1. Department of Mechanical Engineering; Anhui University of Technology; Ma'an'shan 243001
2. School of Material Science and Engineering; Beihang University; Beijing 100083
全文: PDF(739 KB)  
摘要: 

根据理论假设和计算得出LY12CZ在3%NaCl水溶液中点蚀深度Dσ与外加应力σ及腐蚀时间t间符合等式Dσ=AΧC0 exp()tn=A' tn,表明在腐蚀时间相同的情况下,点蚀深度与外加应力之间应符合 Dσ =D 0 exp()t n的指数函数规律;外加应力相同的条件下点蚀扩展速率与腐蚀时间符合Dσ=A' tn的幂函数的规律。不同外加应力下的腐蚀浸泡实验证明,LY12CZ的点蚀深度Dσ扩展确实符合Dσ ∝exp()t n的规律。实验结果证明,铝合金的点蚀数据在有应力的条件下与无应力条件下具有相同的腐蚀深度-时间的幂函数规律,只是随应力大小的不同系数值有不同的变化,A值与外加应力间符合推导的 A'=Aexp()指数函数规律。所以通过对 A值进行修正可以将无应力下的自然腐蚀环境下的腐蚀数据推广到有外加应力的条件下使用。

关键词 点蚀外加应力LY12CZ    
Abstract

The relationship between the pitting depth(Dσ)of LY12CZ in 3%NaCl aqueous solution and applied stress(σ) and corrosion time(t) was calculated,and the results showed that the correlation was accorded with the formula Dσ=AΧC0 exp()tn=A' tn , the formula indicated that the relationship between pitting depth and applied stress was accorded with exponential function Dσ =D 0 exp(bσ)t n under the same corrosion time and power function  Dσ=A' tn under the same applied stress. Experiment results under various applied stress prove that correctness of the formula above, the experimental results showed that pitting data of LY12CZ accords with the same power function Dσ=A' tno matter what  applied stress existed or not, the influence of applied stress was showed in the coefficient of A, the relationship between A'(coefficient A under stress) and σ was Dσ=AΧexp(). so the pitting data of aluminum alloys in natural environment could be extended to the natural environment corrosion under applied stress through amendment to the coefficient A.

Key wordspitting    applied stress    LY12CZ
收稿日期: 2008-09-10     
ZTFLH: 

TG174.3

 
基金资助:

国家重点基础研究发展规划项目(G1999065010)资助

通讯作者: 饶思贤      E-mail: raosixian@ahut.edu.cn
Corresponding author: RAO Sixian     E-mail: raosixian@ahut.edu.cn
作者简介: 仝基斌,男, 1978年生,博士生,研究方向为金属的腐蚀与失效

引用本文:

仝基斌 饶思贤 朱立群 钟群鹏. 有/无应力下LY12CZ铝合金点蚀数据的关联规律[J]. 中国腐蚀与防护学报, 2009, 29(6): 504-508.
RAO Sai-Xian, TONG Ji-Bin, ZHU Li-Qun. CORRELATION BETWEEN THE PITTING DEPTH OF LY12CZ WITH OR WITHOUT STRESS. J Chin Soc Corr Pro, 2009, 29(6): 504-508.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2009/V29/I6/504

[1] GutmanЭМ. Mechanochemistry and Corrosion Prevention of Metals [M]. Beijing: Science Publication, 1989
    (Э.М. 古特曼. 金属力学化学与腐蚀防护 [M]. 北京: 科学出版社, 1989)
[2] Rao S X, Zhu L Q, Li D, et al. Effects of mechanochemistry to the pitting behavior of LY12CZ aluminum alloy [J], J. Chin. Soc. Corros.Prot., 2007, 27(4):228-232
    (饶思贤,朱立群,李荻等,力学化学效应对LY12CZ点蚀行为的影响 [J]. 中国腐蚀与防护学报,2007, 27(4):228-232)
[3] Bonora. P. L, Andrei. M. Corrosion hehavior of stressed magnesium alloys [J]. Corros. Sci., 2002, 729-749
[4] Wang Z F, Li J. Effects of strain amplitude and strain rate to corrosion acceleration of deformation [J]. Acta Metall. Sin., 1994, 30(5), 213-217
    (王政富, 李劲. 应变幅与应变速率在形变加速腐蚀过程中的作用 [J]. 金属学报, 1994, 30(5), 213-217)
[5] Wang J Q. Research on the interaction of deformation and electrochemistry in corrosion fatigue [D]. Shenyang: Ph. D dissertation of the Institute of Metal Research, Chinese Science Academy, 1995
    (王俭秋. 腐蚀疲劳过程中形变与电化学交互作用研究 [D]. 沈阳:中国科学院金属腐蚀与防护研究所博士学位论文, 1995)
[6] Wang J R,Zhu L Q, Rao S X. Strain electrode of A3 steel under elastic deformation [J]. J. Chin. Soc. Corros. Prot., 2005,25(4):226-231
    (王景茹,朱立群, 饶思贤. A3钢在弹性形变范围内的应变电极行为 [J], 中国腐蚀与防护学报, 2005, 25(4): 226-231
[7] Gutman E M, Solovioff G. The mechanochemical behavior of type 316L stainless steel [J]. Corros.Sci., 1996, 38(7): 1141-1145
[8] He J P, Fan W X, Study on corrosion properties of aluminum alloys at low strain rate [J]. J. Chin. Soc.Corros. Prot., 2003, 23(1): 17-20
    (何建平,樊蔚勋, 慢应变速率下铝合金的腐蚀行为 [J], 中国腐蚀与防护学报, 2003, 23(1): 17-20)
[9] Hiroyuki I, Takeo O. Effect of applied stress on anodic  polarization behaviour and  pitting corrosion of stainliess steel [J]. J. Soc. Mater. Sci., 1981, 394-400
[10] FranceJR W D. Effect of Stress and Plastic Deformation on the Corrosion of Steel [C]. The 4th International Congress on Metallic Corrosion, Amsterdam, 1969, 189-199
[11] Liu X D, Frankel G S, Zoofan B, et al, Effect of applied stress on intergranular corrosion of AA2024-T3 [J]. Corros Sci., 2004, 46: 405-425
[12] Ben-Hamua, Eliezer A., Gutman E M, Electrochemical behavior of magnesium alloys strained in buffer solutions [J]. Electrochim. Acta, 2006, 52(1): 304-313
[13] Liu X D, Frankel G S, Effects of compressive stress on localized corrosion in AA2024-T3 [J]. Corros. Sci., 2006
[14] Ben-Hamu. G, Eliezer A., Gutman E M, et al, Mechanoelectrochemical behavior of magnesium alloys [J]. Mater. Sci. Eng., 2006: 109-114
[15] Chen G S, Wan K C, Gao M. et al. Transition from pitting to fatigue crack growth-modeling of corrosion fatigue crack nucleation in a 2024-T3 aluminum alloy [J].Mater. Sci. Eng., 1996 A219: 126-132
[16] Burynski Jr R M, Chen G S,Wei R P, et al. ASME International Mechanical Engineering Congress on Structural Integrity of Aging Aircraft [C]. New York: ASME 1995, 47: 175
[17] Godard H P, Jepson W B, Bothwell M R, et al. The Corrosion of Light Metals [M]. New York: Wiley, 1967: 60.
[18] Cao C N. Natural Environment Corrosion of Materials in China [M]. Beijing: Chemical Industry Press [M], 2005
     (曹楚南. 中国材料的自然环境腐蚀. 化学工业出版社 [M], 2005, 北京)

[1] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[3] 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[4] 戴明杰, 刘静, 黄峰, 胡骞, 李爽. 基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[5] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[6] 贺三, 孙银娟, 张志浩, 成杰, 邱云鹏, 高超洋. 20#钢在含饱和CO2的离子液体醇胺溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[7] 李清, 张德平, 王薇, 吴伟, 卢琳, 艾池. L80油管钢实际腐蚀状况评估及室内电化学和应力腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[8] 郏义征, 王保杰, 赵明君, 许道奎. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[9] 何壮,王兴平,刘子涵,盛耀权,米梦芯,陈琳,张岩,李宇春. 316L和HR-2不锈钢在盐酸液膜环境中的钝化与点蚀[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[10] 苏小红,胡会娥,孔小东. W颗粒/Zr41.2Ti13.8Cu12.5Ni10Be22.5基非晶复合材料在3%NaCl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[11] 王标,杜楠,张浩,王帅星,赵晴. 304不锈钢点蚀产物对亚稳态点蚀萌生和稳态蚀孔生长的加速作用[J]. 中国腐蚀与防护学报, 2019, 39(4): 338-344.
[12] 李雨,关蕾,王冠,张波,柯伟. 机械应力对不锈钢点蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(3): 215-226.
[13] 张思齐,杜楠,王梅丰,王帅星,赵晴. 阴极面积对3.5%NaCl溶液中304不锈钢稳态点蚀生长速率的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 551-557.
[14] 黄博博,刘平,刘新宽,梅品修,陈小红. 新型HSn70-1铜网衣两年期海水腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.
[15] 樊志民, 于锦, 宋影伟, 单大勇, 韩恩厚. 镁合金点蚀的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(4): 317-325.