Please wait a minute...
中国腐蚀与防护学报  2009, Vol. 29 Issue (2): 132-136    
  研究报告 本期目录 | 过刊浏览 |
轧制AZ31B镁合金在空气和NaCl溶液中的疲劳行为
周华茂;王俭秋;张波;韩恩厚;臧启山
中国科学院金属研究所~金属腐蚀与防护国家重点实验室 沈阳 110016
FATIGUE BEHAVIOR OF ROLLED AZ31B MAGNESIUM ALLOY IN AIR AND NaCl SOLUTION
ZHOU Huamao; WANG Jianqiu; ZHANG Bo; HAN Enhou; ZANG Qishan
State Key Laboratory for Corrosion and Protection;Institute of Metal Research;Chinese Academy of Sciences; Shenyang 110016
全文: PDF(2597 KB)  
摘要: 

研究了轧制AZ31B镁合金在空气和NaCl溶液中的疲劳裂纹萌生情况。结果表明,在空气中,第二相开裂导致裂纹萌生;而在NaCl溶液中,点蚀或丝状腐蚀造成的表面损伤均可成为疲劳裂纹源。 NaCl溶液极大地降低了轧制AZ31B镁合金的疲劳寿命。溶液中Cl-含量越高,合金的疲劳寿命越短。

关键词 裂纹萌生第二相蚀坑镁合金    
Abstract

Fatigue crack initiation of rolled AZ31B magnesium alloy in air and NaCl solution was investigated. In air, the cracked second phases were responsible for crack initiation. While in NaCl solution, crack initiated from surface damage which was produced by pit corrosion or filiform corrosion. Increasing Cl- concentration, the crack initiation and propagation in NaCl solutions were enhanced and the fatigue lifetime was decreased.

Key wordscrack initiation    second phase    corrosion pit    magnesium alloy
收稿日期: 2007-05-29     
ZTFLH: 

TG146

 
基金资助:

中国科学院百人计划项目,
国家重点基础研究发展规划项目(2007CB613705)

通讯作者: 王俭秋     E-mail: jiqwang@imr.ac.cn
Corresponding author: WANG Jianqiu     E-mail: jiqwang@imr.ac.cn

引用本文:

周华茂 王俭秋 张波 韩恩厚 臧启山. 轧制AZ31B镁合金在空气和NaCl溶液中的疲劳行为[J]. 中国腐蚀与防护学报, 2009, 29(2): 132-136.
ZHOU Hua-Mao. FATIGUE BEHAVIOR OF ROLLED AZ31B MAGNESIUM ALLOY IN AIR AND NaCl SOLUTION. J Chin Soc Corr Pro, 2009, 29(2): 132-136.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2009/V29/I2/132

[1] Mordike B L, Ebert T. Magnesium properties-applica-\linebreak tions-potential [J].Mater. Sci. Eng., 2001, A302: 37-45
[2] Eisenmerier G, Holzwarth B. Cyclic deformation and fatigue behavior of the magnesium alloy AZ91[J].  Mater. Eng., 2001, A319: 578-582
[3] Mayer H, Papakyriacou M, Zettl B, et al. Influence of porosity on the fatigue limit of die cast magnesium and aluminum alloys[J]. Int. J. Fatigue.,2003, 25(3): 245-256
[4] Nan Z Y, Ishihara S, Goshima, et al. Scanning probe microscope observation of fatigue process in magnesium alloy AZ31 near the fatigue limit[J]. Scr. Mater.,2004, 50(4): 429-434
[5] Tokaji K, Kanakura M, Ishiizumi Y, et al. Fatigue behavior and fracture mechanism of a rolled AZ31 magnesium alloy[J]. Int. J. Fatigue.,2004, 26(11): 1217-1224
[6] Wolf B, Fleck C, Eifler D. Characterization of the fatigue behaviour of the magnesium alloy AZ91D by means of mechanical hysteresis and temperature measurements[J]. Int. J. Fatigue., 2004, 26(12): 1357-1363
[7] Shih T S, Liu W S, Chen Y J. Fatigue of as-extruded AZ61A magnesium alloy[J]. Mater. Sci. Eng., 2002, A325: 152-162
[8] Zeng R C, Han E H, Ke W, et al. Mechanism of corrosion fatigue for as-extruded magnesium alloy AZ80[J]. Chin. J. Mater. Res., 2004, 18(6): 561-567
    (曾荣昌, 韩恩厚, 柯伟等. 变形镁合金AZ80的腐蚀疲劳机理 [J]. 材料研究学报,2004, 18(6): 561-567)
[9] Eliezer A, Gutman E M, Abramov E, et al. Corrosion fatigue of die cast and extruded magnesium alloys[J]. J. Light Met., 2001, 1: 179-186
[10]} Unigovski Y, Eliezer A, Abramov E, et al. Corrosion fatigue of extruded magnesium alloys[J]. Mater. Eng., 2003, A360: 132-139
[11]} Srivatsan T, Sudarshan T. Mechanisms of fatigue crack initiation in metals[J]. J. Mater. Sci., 1998, 23: 1521-1533
[12]} Suresh S. Fatigue of Materials[M]. Cambridge: Cambridge University Press. 1998
[13]} Chen J, Wang J Q, Han E H, et al. States and transport of hydrogen in the corrosion process of an AZ91 magnesium alloy in aqueous solution[J]. Corros. Sci.,2008, 50: 1292-1305
[14]} Zeng R C, Zhang J, Huang W J, et al. Review of studies on corrosion of magnesium alloys[J]. Trans. Nonferrous. Met. Soc.Chin., 2006, 16: 763-771
[15]} Hikmet A, Sadri S. Studies on the influence of chloride ion concentration and pH on the corrosion and electrochemical behavior of AZ63 magnesium alloy[J]. Mater. Des., 2004, 25: 637-643

 

[1] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[2] 魏征, 马保吉, 李龙, 刘潇枫, 李慧. 镁合金表面超声滚压预处理对微弧氧化膜耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[3] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[4] 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[5] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[6] 郏义征, 王保杰, 赵明君, 许道奎. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[7] 张尧, 郭晨, 刘妍慧, 郝美娟, 成世明, 程伟丽. 挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[8] 杨明馨, 高阳, 王辉. 添加Zn2+对ZIRLO合金在模拟压水堆一回路含LiOH和H3BO3水溶液工况下耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 199-204.
[9] 郏义征, 赵明君, 程世婧, 王保杰, 王硕, 盛立远, 许道奎. 模拟人体体液中镁合金的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 463-468.
[10] 欧阳跃军,胡婷,王佳音,谢治辉. 镁合金表面层状双氢氧化物的电化学沉积和表征[J]. 中国腐蚀与防护学报, 2019, 39(5): 453-457.
[11] 王保杰,栾吉瑜,王士栋,许道奎. 镁合金应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[12] 童海生,孙彦辉,宿彦京,庞晓露,高克玮. 海工结构用2205双相不锈钢氢致开裂行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 130-137.
[13] 刘丽,于思荣. 添加Gd对AM60镁合金耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 185-191.
[14] 樊志民, 于锦, 宋影伟, 单大勇, 韩恩厚. 镁合金点蚀的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(4): 317-325.
[15] 王志虎, 张菊梅, 白力静, 张国君. AZ91镁合金表面微弧氧化与化学镀铜复合处理层的微观组织与性能[J]. 中国腐蚀与防护学报, 2018, 38(4): 391-396.