|
|
添加Zn2+对ZIRLO合金在模拟压水堆一回路含LiOH和H3BO3水溶液工况下耐腐蚀性能的影响 |
杨明馨( ), 高阳, 王辉 |
中国原子能科学研究院 北京 102413 |
|
Effect of Zn(CH3COO)2 Addition on Corrosion of ZIRLO Alloy in Simulated PWR Primary Loop Medium with LiOH and H3BO3 |
YANG Mingxin( ), GAO Yang, WANG Hui |
China Institute of Atomic Energy, Beijing 102413, China |
[1] |
National Energy Administration. National Nuclear Long-and-medium Term Development Planning (2005-2020) [G]. National Development and Reform Commission, 2007
|
[1] |
(国家能源局. 核电中长期发展规划 (2005-2020年) [G]. 国家发展和改革委员会, 2007)
|
[2] |
Zhou B X, Li Q, Yao M Y, et al. Effect of water chemistry and composition on microstructural evolution of oxide on Zr alloys [A]. Zirconium in the Nuclear Industry: 15th International Symposium [C]. Oregon, 2009: 360
|
[3] |
Jeong Y H, Baek J H, Kim S J. Corrosion characteristics and oxide microstructure of zirconium alloys for nuclear fuel cladding [J]. Korean J. Mater. Res., 1998, 8(4): 368
|
[4] |
Pathania R, Cheng B, Dove M, et al. Evaluation of zinc addition to the primary coolant of Farley-2 reactor [A]. Proceedings of the 8th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors [C]. Florida, 1997: 379
|
[5] |
Hsueh K, Kohse G, Harling O K. In-reactor simulation study of zinc injection to reduce radioactive corrosion product transport in PWRs [A]. Winter Meeting of the American Nuclear Society [C]. San Francisco:1995
|
[6] |
Kawamura H, Kanbe H, Morita R, et al. Effect of zinc injection on crevice corrosion resistance of pre-filmed Zircaloy-2 tube under heat transfer condition [A]. Proceeding of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power System - Water Reactors [C]. Salt Lake City: The Minerals, Metals & Materials Society, 2005:219
|
[7] |
Frankel P G, Wei J, Francis E M, et al. Effect of Sn on corrosion mechanisms in advanced Zr-cladding for pressurised water reactors [A]. Zirconium in the Nuclear Industry: 17th Volume [C]. West Conshohocken, PA, 2015: 404
|
[8] |
Preuss M, Frankel P, Lozano-Perez S, et al. Studies regarding corrosion mechanisms in zirconium alloys [A]. Zirconium in the Nuclear Industry: 16th International Symposium [C]. West Conshohocken, PA, 2012: 649
|
[9] |
Arborelius J, Dahlbäck M, Hallstadius L, et al. The effect of duplex cladding outer component tin content on corrosion, hydrogen pick-up, and hydride distribution at very high burnup [A]. Zirconium in the Nuclear Industry: Fourteenth International Symposium [C]. West Conshohocken, PA, 2005: 526
|
[10] |
Takeda K, Anada H. Mechanism of corrosion rate degradation due to tin [A]. Zirconium in the Nuclear Industry: 12th International Symposium [C]. West Conshohocken, PA, 2000: 592
|
[11] |
Garzarolli F, Broy Y, Busch R A. Comparison of the long-time corrosion behavior of certain Zr alloys in PWR, BWR, and laboratory tests [A]. Zirconium in the Nuclear Industry: 11th International Symposium [C]. Conshohocken, PA, 1996: 850
|
[12] |
Woo O T, Griffiths M. The role of Fe on the solubility of Nb in α-Zr [J]. J. Nucl. Mater., 2009, 384: 77
|
[13] |
Tejland P, Andrén H O, Sundell G, et al. Oxidation mechanism in zircaloy-2—The effect of SPP size distribution [A]. Zirconium in the Nuclear Industry: 17th International Symposium [C]. West Conshohocken, PA, 2015: 373
|
[14] |
Broy Y, Garzarolli F, Seibold A, et al. Influence of transition elements Fe, Cr, and V on long-time corrosion in PWRs [A]. Zirconium in the Nuclear Industry: 12th International Symposium [C]. West Conshohocken, PA, 2000: 609
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|