Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (2): 199-204    DOI: 10.11902/1005.4537.2018.179
  研究报告 本期目录 | 过刊浏览 |
添加Zn2+对ZIRLO合金在模拟压水堆一回路含LiOH和H3BO3水溶液工况下耐腐蚀性能的影响
杨明馨(), 高阳, 王辉
中国原子能科学研究院 北京 102413
Effect of Zn(CH3COO)2 Addition on Corrosion of ZIRLO Alloy in Simulated PWR Primary Loop Medium with LiOH and H3BO3
YANG Mingxin(), GAO Yang, WANG Hui
China Institute of Atomic Energy, Beijing 102413, China
全文: PDF(4628 KB)   HTML
摘要: 

对ZIRLO合金在360 ℃,18.6 MPa,含LiOH和H3BO3溶液的高温高压釜中进行了水侧腐蚀实验;并通过在其中的一个高压釜中加入乙酸锌,从而对比研究了加Zn对ZIRLO合金耐腐蚀性能的影响。结果表明:在腐蚀介质溶液中添加50 μg/kg乙酸锌对ZIRLO合金的腐蚀增重情况、氧化膜厚度、氧化膜中第二相种类及大小、氧化膜表层元素的种类、分布及价态并无显著影响,但降低了氧化膜表层沉积物中Fe的含量,并抑制了国产新锆合金腐蚀过程中的吸氢。

关键词 ZIRLO合金水侧腐蚀第二相粒子Zn(CH3COO)2    
Abstract

Zn(CH3COO)2 injection in PWR primary loop can slow down the corrosion of structural materials. During the running time of PWR, the water-side corrosion of Zr-based alloy, as fuel element cladding material,may result in significant hydrogen uptake, embrittlement and cracking etc. of the Zr-based alloy, and finally the invalidation of cladding material. In this study, the corrosion behavior of ZIRLO alloy was assessed in LiOH and H3BO3 containing aqueous solution at 360 ℃/18.6 MPa with addition of 50 μg/kg Zn(CH3COO)2 via an autoclave test set, as well as weight change measurement, metalloscopy, XPS and TEM with EDS. The results show that the Zn(CH3COO)2 addition has no significant effect on the weight gain and scale thickness, while the type, valence state and distribution of elements in the formed oxide scale of the tested ZIRLO alloy, but can remarkably reduce the Fe content of the deposits on top of the formed oxide scale, and correspondingly restrain the hydrogen absorption of the ZIRLO alloy.

Key wordsZIRLO alloy    water-side corrosion    second-phase particle    Zn(CH3COO)2
收稿日期: 2018-11-27     
ZTFLH:  TG172.82  
通讯作者: 杨明馨     E-mail: yangmx_92@163.com
Corresponding author: YANG Mingxin     E-mail: yangmx_92@163.com
作者简介: 杨明馨,女,1992年生,硕士

引用本文:

杨明馨, 高阳, 王辉. 添加Zn2+对ZIRLO合金在模拟压水堆一回路含LiOH和H3BO3水溶液工况下耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 199-204.
Mingxin YANG, Yang GAO, Hui WANG. Effect of Zn(CH3COO)2 Addition on Corrosion of ZIRLO Alloy in Simulated PWR Primary Loop Medium with LiOH and H3BO3. Journal of Chinese Society for Corrosion and protection, 2020, 40(2): 199-204.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2018.179      或      https://www.jcscp.org/CN/Y2020/V40/I2/199

图1  ZIRLO合金在360 ℃,18.6 MPa,含LiOH和H3BO3水溶液中腐蚀增重随时间的变化曲线
图2  ZIRLO合金在360 ℃和18.6 MPa条件下不加锌和加锌的LiOH和H3BO3水溶液中腐蚀后的氢化物分布图
Exposure time / d0 μg/kg Zn2+50 μg/kg Zn2+
2050.00440.0026
1100.00340.0023
表1  ZIRLO合金经不同时间腐蚀后的氢含量
图3  ZIRLO合金在360 ℃和18.6 MPa条件下不加锌和加锌的LiOH和H3BO3水溶液中腐蚀后表面氧化膜的TEM明场像
图4  ZIRLO合金在360 ℃和18.6 MPa条件下不加锌和加锌的LiOH和H3BO3水溶液中腐蚀后表面氧化膜内第二相粒子的TEM明场像及EDS结果
图5  ZIRLO合金在不加锌和加锌条件下腐蚀后形成的氧化膜表层O的XPS特征峰
图6  ZIRLO合金在不加锌和加锌条件下腐蚀后形成的氧化膜表层Zr的XPS特征峰
图7  ZIRLO合金在不加锌和加锌条件下腐蚀后形成的氧化膜表层Fe的XPS特征峰
[1] National Energy Administration. National Nuclear Long-and-medium Term Development Planning (2005-2020) [G]. National Development and Reform Commission, 2007
[1] (国家能源局. 核电中长期发展规划 (2005-2020年) [G]. 国家发展和改革委员会, 2007)
[2] Zhou B X, Li Q, Yao M Y, et al. Effect of water chemistry and composition on microstructural evolution of oxide on Zr alloys [A]. Zirconium in the Nuclear Industry: 15th International Symposium [C]. Oregon, 2009: 360
[3] Jeong Y H, Baek J H, Kim S J. Corrosion characteristics and oxide microstructure of zirconium alloys for nuclear fuel cladding [J]. Korean J. Mater. Res., 1998, 8(4): 368
[4] Pathania R, Cheng B, Dove M, et al. Evaluation of zinc addition to the primary coolant of Farley-2 reactor [A]. Proceedings of the 8th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors [C]. Florida, 1997: 379
[5] Hsueh K, Kohse G, Harling O K. In-reactor simulation study of zinc injection to reduce radioactive corrosion product transport in PWRs [A]. Winter Meeting of the American Nuclear Society [C]. San Francisco:1995
[6] Kawamura H, Kanbe H, Morita R, et al. Effect of zinc injection on crevice corrosion resistance of pre-filmed Zircaloy-2 tube under heat transfer condition [A]. Proceeding of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power System - Water Reactors [C]. Salt Lake City: The Minerals, Metals & Materials Society, 2005:219
[7] Frankel P G, Wei J, Francis E M, et al. Effect of Sn on corrosion mechanisms in advanced Zr-cladding for pressurised water reactors [A]. Zirconium in the Nuclear Industry: 17th Volume [C]. West Conshohocken, PA, 2015: 404
[8] Preuss M, Frankel P, Lozano-Perez S, et al. Studies regarding corrosion mechanisms in zirconium alloys [A]. Zirconium in the Nuclear Industry: 16th International Symposium [C]. West Conshohocken, PA, 2012: 649
[9] Arborelius J, Dahlbäck M, Hallstadius L, et al. The effect of duplex cladding outer component tin content on corrosion, hydrogen pick-up, and hydride distribution at very high burnup [A]. Zirconium in the Nuclear Industry: Fourteenth International Symposium [C]. West Conshohocken, PA, 2005: 526
[10] Takeda K, Anada H. Mechanism of corrosion rate degradation due to tin [A]. Zirconium in the Nuclear Industry: 12th International Symposium [C]. West Conshohocken, PA, 2000: 592
[11] Garzarolli F, Broy Y, Busch R A. Comparison of the long-time corrosion behavior of certain Zr alloys in PWR, BWR, and laboratory tests [A]. Zirconium in the Nuclear Industry: 11th International Symposium [C]. Conshohocken, PA, 1996: 850
[12] Woo O T, Griffiths M. The role of Fe on the solubility of Nb in α-Zr [J]. J. Nucl. Mater., 2009, 384: 77
[13] Tejland P, Andrén H O, Sundell G, et al. Oxidation mechanism in zircaloy-2—The effect of SPP size distribution [A]. Zirconium in the Nuclear Industry: 17th International Symposium [C]. West Conshohocken, PA, 2015: 373
[14] Broy Y, Garzarolli F, Seibold A, et al. Influence of transition elements Fe, Cr, and V on long-time corrosion in PWRs [A]. Zirconium in the Nuclear Industry: 12th International Symposium [C]. West Conshohocken, PA, 2000: 609
[1] 康举,董春林,栾国红,何淼,付瑞东. 2024铝合金搅拌摩擦焊焊缝表面腐蚀机理探索[J]. 中国腐蚀与防护学报, 2011, 31(4): 282-288.