Please wait a minute...
中国腐蚀与防护学报  2004, Vol. 24 Issue (6): 321-333     
  研究报告 本期目录 | 过刊浏览 |
腐蚀疲劳裂纹扩展的机理
S.A.Shipilov
卡尔加利大学机械与制造工程系
Mechanisms for corrosion fatigue crack propagation
卡尔加利大学机械与制造工程系
全文: PDF(487 KB)  
摘要: 针对高强度低合金钢、钛合金和镁合金进行了腐蚀疲劳裂纹的扩展FCG、外加电压对于腐蚀疲劳裂纹扩展速率的影响以及断裂表面的研究。在外加电压对于腐蚀疲劳裂纹扩展速率影响的研究过程中,在一段时间内发生极化,可以根据此期间内的开路电压记录裂纹扩展速率,并测量极化情况下的裂纹增长速率。由于裂纹扩展测量技术的进步,测量的时间很少超过300s,这使观测非独立模式阴极极化对于腐蚀疲劳裂纹扩展速率的影响成为可能。当最大应力强度(Kmax)超过给定材料--溶液组合的特定临界特征值时,阴极极化会加速裂纹的扩展。当Kmax低于临界值,而所有其他条件(试件、溶液、pH值、载荷频率、应力比率、温度等)不变时,同样的阴极极化会妨碍裂纹扩展,或者对于裂纹扩展无影响。断口显微分析结果显示,阴极极化下加速裂纹的扩展是由于氢致腐蚀(HIC)。因此,根据氢致腐蚀机理以及KHIC和△ KHIC的显示,Kmax的临界值,以及应力范围(△ K)是由相应的腐蚀疲劳裂纹扩展的症状所确定的。当Kmax > KHIC(△ K > △ KHIC)时,腐蚀疲劳裂纹扩展的主要机理是HIC。对于大多数的材料--溶液组合的研究表明,当Kmax < KHIC(△ K < KHIC)时,应力协助扩散在腐蚀疲劳裂纹扩展中起决定性作用。
关键词 腐蚀疲劳裂纹扩展断裂表面高强度钢氢致    
Abstract:The corrosion fatigue crack growth (FCG)behaviour,the effect of applied potential on corrosion FCG rates,and the fracture surfaces were studied for high-strength low-alloy , titanium alloys and magnesium alloys. During investigation of the effect of applied potential on corrosion FCG rates,polarization was switched on for a time period in which it was possible to register the change in the crack growth rate corresponding to the open-circuit potential and to measure the crack growth rate under polarization.Due to the higher resolution of the crack extension measurement technique,the time rarely exceeded 300s.This approach made possible the observation of a non-single mode effect of cathodic polarization on corrosion FCG rates.Cathodic polarization accelerated crack growth when the maximum stress intensity(Kmax) exceeded a certain well-defined critical value characterisitic for a given material-solution combination.When Kmax was lower than the critical value,the same cathodic polarization,with all other conditions(speci-men,solution,pH,loading frequency,stress ratio,temperature,etc.)being equal,retarded or had no influence on crack growth.The results and fractographic observations suggested that the acceleration in crack growth under cathodic polarization was due to hydrogen-induced cracking(HIC).Therefore,critical values of Kmax ,as well as the stress intensity range (ΔK)were regarded as corresponding to the onset of corrosion FCG according to the HIC mechanism and designated as KHIC and ΔKHIC.HIC was the main mechanism of corrosion FCG at Kmax>KHIC(ΔK>ΔKHIC).For most of the material-solution combinations investigated,stress-assisted dissolution played a dominant role in the corrosion fatigue crack propagation at Kmax
Key wordscorrosion fatigue    crack growth    fracture surface    high-strength steels    hydrogen-induced cracking    magne
收稿日期: 2004-09-08     
ZTFLH:  TG174.34  
通讯作者: S.A.Shipilov   

引用本文:

S.A.Shipilov . 腐蚀疲劳裂纹扩展的机理[J]. 中国腐蚀与防护学报, 2004, 24(6): 321-333 .

链接本文:

https://www.jcscp.org/CN/Y2004/V24/I6/321

[1]GangloffRP .Corrosionfatiguecrackpropagationinmetals[A].In:Environment-InducedCrackingofMetals[M].GangloffRP ,IvesMB ,eds.NACE ,Houston,1990,55-106
[2]Sch櫣tzW.Fatiguelifeprediction-areviewofthestateoftheart[A].In:StructuralFailure,ProductLiabilityandTechnicalInsur ance[M].RossmanithHP ,eds.ElsevierScience,Amsterdam,1993,49-60
[3]ShipilovSA .Environment-assistedcrackingofmaterialsasasig nificantcauseofengineeringsystemsmalfunctions[J].Tech.LawInsur.,1996,1:131-142
[4]NewmanRC ,ProcterRPM .Stresscorrosioncracking:1965-1990[J].Br.Corros.J .,1990,25:259-269
[5]BarsomJM .MechanismsofcorrosionfatiguebelowKISCC[J].Int.J .Fract.Mech.,1971,7:163-182
[6]GallagherJP .CorrosionfatiguecrackgrowthratebehavioraboveandbelowKISCC[J].J.Mater.,1971,6:941-964
[7]VosikovskyO .Frequency,stressratioandpotentialeffectsonfa tiguecrackgrowthofHY130steelinsaltwater[J].J.Test.Eval.,1978,6:175-182
[8]CongletonJ ,CraigIH ,DentonBK ,ParkinsRN .CrackgrowthinHY80andHY130steelsbycorrosionfatigue[J].Met.Sci.,1979,13:436-443
[9]RomanivOM ,VoldemarovAV ,NykyforchynGM .Factorsinac celerationofcrackgrowthduringcorrosionfatigueofhigh-strengthsteels[J].Fiz.-Khim.Mekh.Mater.,1980,16(5):21-27(inRussian)
[10]FujiiCT ,SmithJA .Environmentalinfluencesontheaqueousfa tiguecrackgrowthratesofHY -130steel[A].In:CorrosionFa tigue:Mechanics,Metallurgy,ElectrochemistryandEngineering,ASTMSTP 801[M ].CrookerTW ,LeisBN ,edit.ASTM ,Philadelphia,1983,390-402
[11]KomaiK ,KitaS ,EndoK .Corrosionfatiguecrackgrowthofahigh-tensionsteelinNaClsolution[J].Bull.JapanSoc.Mech.Eng.,1984,27(227):847-853
[12]TongZS ,LiMQ ,FengBX ,ShiY .ThecorrosionfatigueofSiCrMoCuVsteelin3.5%NaClsolution[J].Corrosion,1985,41:121-126
[13]MurakamiR ,FergusonWG .Theeffectsofcathodicpotentialandcalcareousdepositsoncorrosionfatiguecrackgrowthrateinseawa terfortwooffshorestructuralsteels[J].FatigueFract.EngngMater.Struct.,1987,9:477-488
[14]MeynDA .Ananalysisoffrequencyandamplitudeeffectsoncor rosionfatiguecrackpropagationinTi-8Al-1Mo-1V[J].Met all.Trans.,1971,2:853-865
[15]PetersM ,GyslerA ,TjeringGL .InfluenceoftextureonfatiguepropertiesofTi-6Al-4V[J].Metall.Trans.,1984,15A :1597-1605
[16]RungtaR ,BegleyJA .TheeffectofappliedpotentialoncorrosionfatiguecrackgrowthratesofaNi-Cr-Mo-Vturbinediscsteelinaroomtemperature12MNaOHsolution[J].Corrosion,1979,35:544-550
[17]JonesDA .Aunifiedmechanismofstresscorrosionandcorrosionfatiguecracking[J].Metall.Trans.,1985,16A :1133-1141
[18]MasudaH ,NishijimaS .Applicationofscratchingelectrodemethodforcorrosionfatigue[J].Trans.Nat.Res.Inst.Met.,1987,29:44-50
[19]SpeidelMO ,BlackburnMJ,BeckTR ,FeeneyJA .Corrosionfa tigueandstresscorrosioncrackgrowthinhighstrengthaluminumalloys,magnesiumalloys,andtitaniumalloysexposedtoaqueousso lutions[A].In:CorrosionFatigue:Chemistry,MechanicsandMi crostructure[M ].DevereuxO ,McEvilyAJ,StaehleRW ,eds.NACE ,Houston,1972,324-345
[20]ShimojoM ,HigoY ,NunomuraS .Relationbetweentheamountoffreshbaresurfaceatthecracktipandthefatiguecrackpropagationrate[J].ISIJInt.,1991,31:870-874
[21]FroatsA ,AuneTKr,HawkeD ,UnsworthW ,HillisJ.Corrosionofmagnesiumandmagnesiumalloys[A].In:MetalsHandbook,Vol.13:Corrosion,9thed.[M].ASMInternational,MetalsPark,1987,740-754
[22]LoganHL .Mechanismofstress-corrosioncrackingintheAZ31Bmagnesiumalloy[J].J.Res.Nat.Bur.Stand.,1958,61:503-508
[23]TomashovND ,IsaevNI.Investigationofanodicprocessesduringstresscorrosioncrackinginmetals[J].Dok.Akad.NaykSSSR ,1960,132:409-412(inRussian)
[24]FairmanL ,WestJM .Stress-corrosioncrackingofamagnesium-aluminumalloy[J].Corros.Sci.,1965,5:711-715
[25]PughEN ,GreenJAS ,SlatteryPW .Onthepropagationofstress-corrosioncracksinamagnesium-aluminumalloy[A].In:Fracture1969[M].PrattPL ,etal,eds.London:ChapmanandHallLtd.,1969,387-395
[26]ChakrapaniDG ,PughEN .HydrogenembrittlementinaMg-Alalloy[J].Metall.Trans.,1976,7A :173-178
[27]MoccaryA ,ShastryCR .AninvestigationofstresscorrosioncrackinginMgAZ61alloyin3.5%NaCl+2%K2CrO4 aqueoussolutionatroomtemperature[J].Z .Werkstofftech.,1979,10:119-123
[28]MeletisEI ,HochmanRF .Crystallographyofstresscorrosioncrackinginpuremagnesium[J].Corrosion,1984,40:39-45
[29]StampellaRS ,.ProcterRPM ,AshworthV .Environmentally-inducedcrackingofmagnesium[J].Corros.Sci.,1984,24:325-341
[30]EbtehajK ,HardieD ,ParkinsRN .Theinfluenceofchloride-chromatesolutioncompositiononthestresscorrosioncrackingofaMg-Alalloy[J].Corros.Sci.,1988,28:811-829
[31]LynchSP ,TrevenaP .Stresscorrosioncrackingandliquidmetalembrittlement[J].Corrosion,1988,44:113-123
[32]UhligHH .Actionofcorrosionandstresson13%Crstainlesssteel[J].Met.Prog.,1950,57:486-487
[33]PhelpsEH ,LoginowAW .Stresscorrosionofsteelsforaircraftandmissiles[J].Corrosion,1960,16:325t-335t
[34]LeckieHP .Effectofenvironmentonstressinducedfailureofhighstrengthmaragingsteels[A].In:FundamentalAspectsofStressCorrosionCracking[M ].StaehleRW ,FortyAJ,VanRooyenD ,edit.NACE ,Houston,1969,411-419
[35]MurakamiR ,FergusonWG .Theeffectsofamarineenvironmentonthecorrosionfatiguecrackpropagationrateofpuretitaniumanditsweldmetal[J].FatigueFractEngngMater.Struct.,1993,16:255-265
[36]MarichevVA ,ShipilovSA .Influenceofelectrochemicalpolariza tiononcrackgrowthincorrosioncrackingandcorrosionfatigueofmagnesiumalloys[J].Fiz.-Khim.Mekh.Mater.,1986,22(3):21-25(inRussian)
[37]ShipilovSA .Anewmethodforidentificationofthemechanismofcorrosionfatiguecrackgrowth[J].Corrosion/96.NACE ,Houston,1996,247
[38]ShipilovSA .Corrosionfatiguecrackgrowthbehavioroftitaniumalloysinaqueoussolutions[J].Corrosion,1998,54:29-39
[39]MarichevVA ,RosenfeldIL .Investigationofthemechanismofstresscorrosioncrackinginhighstrengthsteels[J].Corrosion,1976,32:423-429
[40]MarichevVA ,RosenfeldIL ,LuninVV .Investigationoftheki neticsandmechanismofsubcriticalcrackgrowthbydelayedfailureoftitaniumalloysinandoutofcorrosiveenvironments[J].Corro sion,1980,36:373-379
[41]DawsonDB ,PellouxRM .Corrosionfatiguecrackgrowthoftita niumalloysinaqueoussolutions[J].Metall.Trans.,1974,5:723-731
[42]MarichevVA .Aquantifiedconceptofthehydrogenpenetrabilityofpassivatingfilmsatacracktipduringstresscorrosioncrackingofstructuralmaterials[J].Werkst.Korros.,1985,36:278-290
[43]PourbaixM .TranslatedbyFranklinJA .AtlasofElectrochemicalEquilibriainAqueousSolutions[M ].Oxford:PergamonPress,1966
[44]HardieD .Theenvironment-inducedcrackingofhexagonalmate rials:magnesium,titanium,andzirconium[A].In:Environment-InducedCrackingofMetals[M ].GangloffRP ,IvesMB ,eds.NACE ,Houston,1990,347-360
[45]GrinbergNM ,SerdyukVA ,MalinkinaTI,KamyshkovAS .Ef fectofvacuumandlowtemperatureonthefatiguecrackpropagationinmagnesiumalloys[J].Fiz.-Khim.Mekh.Mater.,1982,19(4):48-54(inRussian)
[46]OweBergTG .Kineticsofabsorptionbymetalsofhydrogenfromwaterandaqueoussolutions[J].Corrosion,1960,16:198t-200t
[47]BrownBF ,FujiiCT ,DahlbergEP .Methodsforstudyingtheso lutionchemistrywithinstresscorrosioncracks[J].J .Electrochem.Soc.,1969,116:218-219
[48]TauntRJ,CharnockW .Fluidcompositionswithinfatiguecracks[J].Mater.Sci.Eng.,1978,35:219-228
[49]TurnbullA ,FerrissDH .Mathematicalmodellingoftheelectro chemistryincorrosionfatiguecracksinstructuralsteelcathodicallyprotectedinseawater[J].Corros.Sci.,1986,26:601-628
[50]TurnbullA ,SaenzdeSantaMariaM .Predictingthekineticsofhydrogengenerationatthetipsofcorrosionfatiguecracks[J].Met all.Trans.,1988,19A :1795-1806
[51]ZakroczymskiT .Entryofhydrogenintoironalloysfromtheliquidphase[A].In:HydrogenDegradationofFerrousAlloys[M].Ori aniRA ,HirthJP ,SmialowskiM ,edit.NoyesPublications,ParkRidge,1985,215-250
[52]PellouxRM .Corrosion-fatiguecrackpropagation[A].In:Frac ture1969[M].PrattPL ,etal,edit.London:ChapmanandHallLtd.,1969,731-739
[53]OrianRA .Amechanistictheoryofhydrogenembrittlementofsteels[J].Ber.Bunsenges.Phys.Chem.,1972,76:848-857
[54]SureshS ,RitchieRO .Mechanisticdissimilaritiesbetweenenviron mentallyinfluencedfatigue-crackpropagationatnear-thresholdandhighergrowthratesinlowerstrengthsteels[J].Met.Sci.1982,16:529-538
[55]HiranoK ,KobayashiY ,KobayashiH ,NakazawaH .Hydrogenen hancedfatiguecrackgrowthbehaviorofhighstrengthsteels[A].In:Materials,ExperimentationandDesigninFatigue-Proc.Fa tigue’81[C].SherrattF ,SturgeonJB ,eds.WestburyHouse,Guild ford,1981,87-96
[56]TauL ,ChanSLI,ShinCS .Hydrogenenhancedfatiguecrackpropagationofbainiticandtemperedmartensiticsteels[J].Corros.Sci.,1996,38:2049-2060
[57]NakasaK ,SatohH .Theeffectofhydrogen-chargingonthefa tiguecrackpropagationbehaviorofβ-titaniumalloys[J].Corros.Sci.,1996,38:457-468
[58]YoungJrGA ,ScullyJI.Hydrogenembrittlementofsolutionheat-treatedandagedβ-titaniumalloysTi-15%V -3%Cr-3%Al-3%SnandTi-15%Mo-3%Nb-3%Al[J].Corrosion,1994,50:919-933
[59]VenkataramanG ,GoolsbyAD .Hydrogenembrittlementintitani umalloysfromcathodicpolarizationinoffshoreenvironments,anditsmitigation[J].Corrosion/96.NACE ,Houston,1996,554.
[60]GangloffRP ,TurnbullA .Crackelectrochemistrymodelingandfracturemechanicsmeasurementofthehydrogenembrittlementthresholdinsteel[A ].In:ModelingEnvironmentalEffectsonCrackGrowthProcesses[M ].JonesRH ,GerberichWW ,eds.Warrendale:TheMetallurgicalSocietyofAIME ,1986,55-81
[61]DeKazinczyF .Effectofstressesonhydrogendiffusioninsteel[J].Jernkont.Ann.,1995,139:885-895
[62]BeckW ,BockrisJO’M ,McBreenJ,NanisL .Hydrogenperme ationinmetalsasafunctionofstress,temperatureanddissolvedhy drogenconcentration[J].Proc.Roy.Soc.,1996,A290(1421):220-235(London)
[63]BlundyRF ,RoyceR ,PooleR ,ShreirLL .Effectofpressureandstressonpermeationofhydrogenthroughsteel[A].In:StressCor rosionCrackingandHydrogenEmbrittlementofIronBaseAlloys[C].StaehleRW ,HochmannJ ,McCrightRD ,SlaterJE ,eds.NACE ,Houston,1977,636-647
[64]TroianoAR .Theroleofhydrogenandotherinterstitialsinthemechanicalbehaviorofmetals[J].Trans.ASM ,1960,52:54-80
[65]DoigP ,JonesGT .Amodelfortheinitiationofhydrogenembrit tlementcrackingatnotchesingaseoushydrogenenvironments[J].Metall.Trans.,1977,8A :1993-1998
[66]AkhurstK .Acriterionforhydrogen-inducedfracture[A].In:AdvancesinFractureResearch-Fracture81[M ].FrancoisD ,etal,eds.Oxford:PergamonPress,1982,1899-1907
[67]RitchieRO ,GenietsLCE ,KnottJF .Effectsofgrain-boundaryembrittlementonfractureandfatiguecrackpropagationinalowal loysteel[A].In:TheMicrostructureandDesignofAlloys[M ].London:TheInstituteofMetals,1973,124-128
[68]PaoPS ,WeiW ,WeiRP .EffectoffrequencyonfatiguecrackgrowthresponseofAISI 4340steelinwatervapor[A].In:Envi ronment-SensitiveFractureofEngineeringMaterials[M ].ForoulisZA ,eds.Warrendale:TheMetallurgicalSocietyofAIME ,1979,565-580
[69]NakasaK ,TakeiH ,KajiwaraK .Effectofstresswaveshapeonthecrackpropagationvelocityincyclicdelayedfailure[J].EngngFract.Mech.,1981,14:507-517
[70]HiroseY ,MuraT .Cracknucleationandpropagationofcorrosionfatigueinhigh-strengthsteel[J].EngngFract.Mech.,1985,22:859-870
[71]PittinatoGF .Hydrogen-enhancedfatiguecrackgrowthinTi-6Al-4VELIweldments[J].Metall.Trans.,1972,3:235-243
[72]GerberichWW ,MoodyNR ,JensenCL ,HaymanC ,Jatavallab hulaK .Hydrogeninα/βandallβtitaniumsystems:analysisofmi crostructureandtemperatureinteractionsoncracking[A].In:Hy drogenEffectsinMetals[M].BernsteinIM ,ThompsonAW ,eds.Warrendale:TheMetallurgicalSocietyofAIME ,1981,731-743
[73]OrianiRA ,JosephicPH .Equilibriumaspectsofhydrogen-in ducedcrackingofsteels[J].ActaMetall.,1974,22:1065-1074
[74]GerberichWW ,ChenYT .Hydrogen-controlledcracking-anapproachtothresholdstressintensity[J].Metall.Trans.,1975,6A :271-278
[75]EndoK ,KomaiK ,MatsudaY .Influencesofstressratiosoncyclicstresscorrosioncrackgrowthcharacteristicsofahigh-strengthsteel[J].Bull.JapanSoc.Mech.Eng.,1981,24(197):1885-1892
[76]GerberichWW ,YuW .Hydrogeninteractionsinfatiguecrackthresholds[A].In:FractureProblemsandSolutionsintheEnergyIndustry[C].SimpsonLA ,eds.Oxford:PergamonPress,1982,39-50
[77]VanLeeuwenHP .Thekineticsofhydrogenembrittlement:aquantita tivediffusionmodel[J].EngngFract.Mech.,1974,6:141-146
[78]McMahonJrCJ,BriantCL ,BanerjiSK .Theeffectsofhydrogenandimpuritiesonbrittlefractureinsteel[A].In:AdvancesinRe searchontheFractureofMaterials-Fracture77[M].TaplinDMR ,eds.NewYork:PergamonPress,1978,363-385
[79]BowlesCQ ,SchijveJ .Experimentalobservationsofenvironmentalcontributionstofatiguecrackgrowth[A].In:CorrosionFatigue:Mechanics,Metallurgy,ElectrochemistryandEngineering,ASTMSTP 801[M].CrookerTW ,LeisBN ,eds.ASTM ,Philadelphia,1983,96-113
[80]PhillipsII,PooleP ,ShreirLL .HydrideformationduringcathodicpolarizationofTi-I.Effectofcurrentdensityonkineticsofgrowthandcompositionofhydride[J].Corros.Sci.,1972,12:855-866
[81]OrmanS ,PictonG .Theroleofhydrogeninthestresscorrosioncrackingoftitaniumalloys[J].Corros.Sci.1974,14:451-459
[82]HackJE ,LeverantGR .Theinfluenceofmicrostructureonthesusceptibilityoftitaniumalloystointernalhydrogenembrittlement[J].Metall.Trans.,1982,13A :1729-1738
[83]MeynDA .Effectofhydrogenonfractureandinert-environmentsustainedloadcrackingresistanceofα-βtitaniumalloys[J].Met all.Trans.,1974,5:2405-2414
[84]SastrySML ,LederichRJ ,RathBB .Subcriticalcrack-growthundersustainedloadinTi-6Al-6V -2Sn[J].Metall.Trans.,1981,12A :83-94
[85]PaoPS ,WeiRP .Hydrogen-enhancedfatiguecrackgrowthinTi-6Al-2Sn-4Zr-2Mo-0.1Si[A].In:Titanium,ScienceandTechnology[M ].TjeringGL ,ZwickerU ,BunkW ,eds.DGM ,Oberursel,1985,4:2503-2510
[86]ClarkeCE ,HardieD ,IkedaBM .Theeffectofhydrogencontentonthefractureofpre-crackedtitaniumspecimens[J].Corros.Sci.,1994,36:487-509
[87]FrandsenJD ,MarcusHL .Thecorrelationbetweengrainsizeandplasticzonesizeforenvironmentalhydrogenassistedfatiguecrackpropagation[J].Scrip.Metall.,1975,9:1089-1094
[88]AustenIM ,McIntyreP .Corrosionfatigueofhigh-strengthsteelinlow-pressurehydrogengas[J].Met.Sci.,1979,13:420-428
[89]RungtaR ,BegleyJA ,StaehleRW .Effectofsteamimpuritiesoncorrosionfatiguecrackgrowthratesofaturbinediscsteel[J].Cor rosion37.1981,682-690
[90]RobertsonWD ,TetelmanAS .Aunifiedstructuralmechanismforintergranularandtransgranularcorrosioncracking[A ].In:StrengtheningMechanismsinSolids[M ].ASM ,MetalsPark,1962,217-252
[91]YoshinoK ,McMahonJrCJ .Thecooperativerelationbetweentemperembrittlementandhydrogenembrittlementinahighstrengthsteel[J].Metall.Trans.,1974,5:363-370
[92]BriantCL ,BanerjiSK .Intergranularfailureinsteel:theroleofgrain-boundarycomposition[J].Int.Met.Rev.,1978,23:164-199
[93]CraigBD ,KraussG .Thestructureoftemperedmartensiteanditssusceptibilitytohydrogenstresscracking[J].Metall.Trans.,1980,11A :1799-1808
[94]BandyopadhyayN ,KamedaJ ,McMahonJrCJ .Hydrogen-in ducedcrackingin4340-typesteel:effectsofcomposition,yieldstrengthandH2 pressure[J].Metall.Trans.,1983,14A :881-888
[95]KamedaJ,McMahonJrCJ.TheeffectsofSb,SnandPonthestrengthofgrainboundariesinaNi-Crsteel[J].Metall.Trans.,1981,12A :31-37
[96]PowellDT ,ScullyJC .Stresscorrosioncrackingofalphatitaniumalloysatroomtemperature[J].Corrosion,1968,24:151-158
[97]LynchSP .Failuresofstructuresandcomponentsbyenvironmen tallyassistedcracking[J].EngngFailureAnalys,1994,1:77-90Z
[1] 艾芳芳, 陈义庆, 钟彬, 李琳, 高鹏, 伞宏宇, 苏显栋. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.
[2] 孙永伟,钟玉平,王灵水,范芳雄,陈亚涛. 低合金高强度钢的耐模拟工业大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[3] 王保杰,栾吉瑜,王士栋,许道奎. 镁合金应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[4] 廖家鹏,吴欣强. 核电材料高温高压水缺口疲劳性能研究现状与进展[J]. 中国腐蚀与防护学报, 2018, 38(6): 511-516.
[5] 张克乾,胡石林,唐占梅,张平柱. 冷加工核电结构材料在高温高压水中应力腐蚀裂纹扩展行为的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(6): 517-522.
[6] 郭强, 陈长风, 李世瀚, 于浩波, 李鹤林. 冷焊修复层在H2S环境下的开裂行为研究[J]. 中国腐蚀与防护学报, 2018, 38(2): 167-173.
[7] 朱若林, 张利涛, 王俭秋, 张志明, 韩恩厚. 核级316LN不锈钢弯管在高温高压水中的应力腐蚀裂纹扩展行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 54-61.
[8] 张乃强,岳国强,吕法彬,曹琦,李梦源,徐鸿. Inconel625合金在高温水蒸气环境中应力腐蚀开裂裂纹扩展速率研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 9-15.
[9] 朱若林,张志明,王俭秋,韩恩厚. 核电异种金属焊接接头的应力腐蚀裂纹扩展行为研究进展[J]. 中国腐蚀与防护学报, 2015, 35(3): 189-198.
[10] 刘晓强,徐雪莲,谭季波,王媛,吴欣强,郑宇礼,孟凡江,韩恩厚. 反应堆冷却剂环境对690合金传热管疲劳性能影响研究[J]. 中国腐蚀与防护学报, 2015, 35(3): 213-219.
[11] 史显波, 王威, 严伟, 单以银, 杨柯. M/A组元对高强度管线钢抗H2S性能的影响[J]. 中国腐蚀与防护学报, 2015, 35(2): 129-136.
[12] 王斌, 周翠, 李良君, 胡红梅, 朱加祥. X100管线钢焊接接头抗HIC性能研究[J]. 中国腐蚀与防护学报, 2014, 34(3): 237-242.
[13] 梁瑞, 张新燕, 李淑欣, 姜峰, 陈帅甫. 半椭球蚀坑对圆棒应力集中的影响[J]. 中国腐蚀与防护学报, 2013, 33(6): 532-536.
[14] 孙敏,肖葵,董超芳,李晓刚,钟平. 300M和Cr9钢在酸性介质中的电化学性能研究[J]. 中国腐蚀与防护学报, 2012, 32(6): 449-454.
[15] 谭季波,吴欣强,韩恩厚. 动态应变时效对核电材料环境致裂影响的研究现状与进展[J]. 中国腐蚀与防护学报, 2012, 32(6): 437-442.