Please wait a minute...
中国腐蚀与防护学报  2002, Vol. 22 Issue (1): 48-53     
  研究报告 本期目录 | 过刊浏览 |
用丝束电极研究SRB微生物诱导腐蚀的电化学特征
董泽华;郭兴蓬;刘宏芳
武汉华中科技大学化学系
STUDY ON ELECTROCHEMISTRY CHARACTERISTICSIN MIC BY WIRE BEAM ELECTRODES
Zehua Dong;Xingpeng Guo;Hongfang Liu
武汉华中科技大学化学系
全文: PDF(185 KB)  
摘要: 应用丝束电极研究了半连续培养基中SRB及其生物膜对Q235 低碳钢腐蚀的影响.采用电位、电流以及阻抗扫描技术测试了生物膜的不均匀性特性,以及 电极开路电位和电化学阻抗谱(EIS)与培养时间的关系.发现随生物膜的成长,开路电位负 移.由于生物膜中SRB代谢产生的硫化物具有导电性,使表面电位扫描已不能作为生物膜下 局部腐蚀的判据,但表面阻抗扫描却可探测到膜下的局部腐蚀.EIS表明,生物膜电容极大( 104~105 μF/cm2),且膜电容随时间呈S型增加,而溶液电阻和电荷传递电阻则呈指 数下降.
关键词 微生物诱导腐蚀碳钢电化学阻抗谱    
Abstract:Wire beam electrode(WBE) was applied to study the m icrobiologically influenced corrosion(MIC) of Q235 carbon steel associated with sulphate reducing bacteria(SRB) in semicontinuous culture medium(to be complete ly refreshed every 72 hours).The potential,galvanic current density and impedanc e mapping,as well as open circuit potential(OCP) and electrochemical impedance s pectrum(EIS) were measured to predict the localized corrosion under biofilm duri ng SRB growing.As a result,the OCP moved negatively gradually with time.However, The mapping showed the potential fluctuation on the WBE surface decreased over t ime due to the conductivity of FeSx(x=0.9~2) metabolized by SRB in th e biofilm.Therefore,the potential mapping could not be a criterion of localized corrosion under biofilm.Instead,the impedance mapping could give a good predicti on to the MIC.In addition,The biofilm capacity moved up to a very large level(~ 105 μF/cm2) in shape of sigmoid when SRB grew.At the same time,both solutio n resi〖JP2〗stance and charge transfer resistance decreased exponentially.〖JP 〗
Key wordsmicrobiologically influenced corrosion    carbon steel    electrochemical impedance spectrum
收稿日期: 2000-10-08     
ZTFLH:  TG174  
通讯作者: 董泽华   
Corresponding author: Zehua Dong   

引用本文:

董泽华; 郭兴蓬; 刘宏芳 . 用丝束电极研究SRB微生物诱导腐蚀的电化学特征[J]. 中国腐蚀与防护学报, 2002, 22(1): 48-53 .
Zehua Dong, Xingpeng Guo, Hongfang Liu. STUDY ON ELECTROCHEMISTRY CHARACTERISTICSIN MIC BY WIRE BEAM ELECTRODES. J Chin Soc Corr Pro, 2002, 22(1): 48-53 .

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2002/V22/I1/48

[1]DanielH ,PopeE ,AlanMorrisIII.Someexperienceswithmicrobi ologicallyinfluencedcorrosionofpipelines[J].MaterialsPerfor mance,1995,34(5):23-28
[2]SoebbingJohnB ,YoloRogerA .Microbiologicallyinfluencedcorro sioninwastewatertreatmentplants[J].MaterialsPerformance,1996,35(9):41-48
[3]GeorgeJLicina,CurtisSCarnery.MonitoringbiofilmformationandincipientMICinrealtime[A].Corrosion99,NACE[C].Hous ton,TX ,1999,175
[4]FranklinMichaelJ ,WhiteDavidC ,IsaacsHughS .Pittingcorrosionbybacteriaoncarbonsteeldeterminedbythescanningvibratingelectrodetechnique[J].Corros.Sci.,1991,32(9):945-952
[5]FranklinMJ,NivensDE ,GuckertJB .Effectofelectrochemicalimpedancespectroscopyonmicrobialbiofilmscellnumbers,viabilityandactivity[J].Corrosion,1991,47(7):519-522
[6]TanYJ .Monitoringlocalizedcorrosionprocessesandestimatinglo calizedcorrosionratesusingawirebeamelectrode[J].Corrosion,1998,54(5):403~413
[7]TanYongjun.Wirebeamelectrode:anewtoolforstudyinglocalizedcorrosionandotherheterogeneouselectrochemicalprocesses[J].Corros.Sci.,1999,41(2):229~247
[8]MansfeldFlorian,etal.Technicalreviewofelectrochemicaltech niquesappliedtomicrobiologicallyinfluencedcorrosion[J].Corros.Sci.,1991,32(3):242-272
[9]PengCG ,ParkJK .Principalfactorsaffectingmicrobiologicallyin fluencedcorrosionofcarbonsteel[J].Corrosion,1994,50(9):669-675
[10]ChungY ,ThomasLK .ComparisonofMICpitmorphologywithnon-micchlorideinducedpitsintype304/304L/E308stainlesssteelbasemetal/welds[A].Corrosion99,NACE [C].Houston,TX ,1999,159
[11]AngellP ,UrbanicK .Sulfate-reducingbacterialactivityasapa rametertopredictlocalizedcorrosionofstainlessalloys[J].Corros.Sci.,2000,42(5):897-912
[12]FerrerIJ,CaballeroF ,DelasHerasC ,SanchezC .Preparationofn-typedopedFeS2 thinfilms[J].SolidStateCommunications,1994,89(4):349-352
[13]CaoCN .CorrosionElectrochemistry,ThesaurusofCorrosionandProtection[M].Beijing:ChemistryIndustryPress,1994,94
(曹楚南.腐蚀电化学,腐蚀与防护全书.北京:化学工业出版社,1994,94)
[14]MacDonaldDD .TechniquesforCharacteristicofElectrodesandElectrochemicalProcess[M].EditedbyRaviVarma,SelmanJR ,NewYork:JohnWiley&Sons,1991.
[1] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[2] 许萍,张硕,司帅,张雅君,汪长征. EPS的主要成分-蛋白质、多糖抑制碳钢腐蚀机理研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 176-184.
[3] 钟显康,扈俊颖. 恒定的pH值和Fe2+浓度下X65碳钢的CO2腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(6): 573-578.
[4] 王力, 郭春云, 肖葵, 吐尔逊·斯拉依丁, 董超芳, 李晓刚. Q235和Q450钢在吐鲁番干热大气环境中长周期暴晒时的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.
[5] 乔越, 朱志平, 杨磊, 刘志峰. 高温状态下锅炉给水氧化还原电位监测与模拟实验研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 487-494.
[6] 彭晚军, 丁纪恒, 陈浩, 余海斌. 生物基缓蚀剂糠醇缩水甘油醚的缓蚀性能及机理[J]. 中国腐蚀与防护学报, 2018, 38(3): 303-308.
[7] 钱备, 刘成宝, 宋祖伟, 任俊锋. 纳米容器改性环氧涂层对Q235碳钢的防腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 133-139.
[8] 偶国富, 赵露露, 王凯, 王宽心, 金浩哲. 10#碳钢在HCl-H2O环境中的露点腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 33-38.
[9] 张杰, 胡秀华, 郑传波, 段继周, 侯保荣. 海洋微藻环境中钙质层对Q235碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[10] 孟晓波,蒋武斌,廖永力,李锐海,郑志军,高岩. 输电杆塔材料在模拟工业环境中的大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 460-466.
[11] 程庆利,陶彬,刘栓,刘全桢,张卫华,田松柏,王立平. 原油沉积水对Q235B碳钢的腐蚀影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 126-134.
[12] 郝永胜,Luqman Abdullahi SANI,宋立新,徐国宝,葛铁军,方庆红. 中性和酸性溶液中Q235碳钢表面沉积植酸转化膜的耐蚀行为研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 549-558.
[13] 王吉会,闫华杰,胡文彬. 钼酸盐插层锌铝铈水滑石的制备与缓蚀性能研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 637-644.
[14] 刘宏伟,熊福平,吕亚林,葛承宣,刘宏芳,胡裕龙. 动态条件下十二胺对Q235碳钢CO2腐蚀的缓蚀行为研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 645-651.
[15] 王春霞,陈敬平,张晓红,王赪胤. 溴化N-辛烷异喹啉在盐酸溶液中对Q235碳钢的缓蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(3): 245-252.