Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (5): 1187-1195     CSTR: 32134.14.1005.4537.2024.358      DOI: 10.11902/1005.4537.2024.358
  综合评述 本期目录 | 过刊浏览 |
铅冷快堆候选结构材料液态铅铋共晶环境中疲劳行为研究进展
史轩铭1,2, 谭季波1(), 张兹瑜1, 吴欣强1
1 中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 辽宁省核电材料安全与评价技术重点实验室 沈阳 110016
2 中国科学技术大学材料科学与工程学院 沈阳 110016
A Review on Fatigue Behavior of Candidate Structure Materials for Lead-cooled Fast Reactors in Liquid Lead-bismuth Eutectic
SHI Xuanming1,2, TAN Jibo1(), ZHANG Ziyu1, WU Xinqiang1
1 CAS Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

史轩铭, 谭季波, 张兹瑜, 吴欣强. 铅冷快堆候选结构材料液态铅铋共晶环境中疲劳行为研究进展[J]. 中国腐蚀与防护学报, 2025, 45(5): 1187-1195.
Xuanming SHI, Jibo TAN, Ziyu ZHANG, Xinqiang WU. A Review on Fatigue Behavior of Candidate Structure Materials for Lead-cooled Fast Reactors in Liquid Lead-bismuth Eutectic[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1187-1195.

全文: PDF(587 KB)   HTML
摘要: 

材料在液态铅铋环境中的腐蚀疲劳性能是开展铅冷快堆关键设备设计的关键因素。本文介绍了铁素体/马氏体钢和奥氏体不锈钢在液态铅铋共晶环境中的疲劳行为,总结了材料因素(结构与表面状态)、环境因素(温度与氧浓度)与载荷因素(应变幅、应变速率)对液态铅铋疲劳寿命的影响规律,讨论了液态金属腐蚀和液态金属脆化对材料腐蚀疲劳损伤机理的影响,提出了当前研究中存在的问题,展望了未来的研究方向。

关键词 铅冷快堆铅铋共晶腐蚀疲劳液态金属脆化液态金属腐蚀    
Abstract

The corrosion fatigue performance of materials in liquid lead-bismuth eutectic is a key factor for the design of key equipment of lead-cooled fast reactors. This article presents a review of the current researches on fatigue behavior of ferritic/martensitic steels and austenitic stainless steels in liquid lead-bismuth eutectic, with focus on the influence of the material factors (microstructure and surface state), environmental factors (temperature and dissolved oxygen concentration) and load factors (strain amplitude and strain rate). Meanwhile, the effect of liquid metal corrosion and liquid metal embrittlement on the corrosion fatigue damage mechanism of materials is also discussed. Moreover, the problems existing in the current researches are identified and discussed. An outlook of the future research directions is also provided.

Key wordslead-cooled fast reactors    lead-bismuth eutectic    corrosion fatigue    liquid metal embrittlement    liquid metal corrosion
收稿日期: 2024-11-04      32134.14.1005.4537.2024.358
ZTFLH:  TG174  
基金资助:国家自然科学基金(52271077);中国科学院青年创新促进会项目(2021189);中国科学院A类先导专项(XDA0410403)
通讯作者: 谭季波,E-mail:jbtan10s@imr.ac.cn,研究方向为三代压水堆及四代铅冷快堆结构材料环境相容性
Corresponding author: TAN Jibo, E-mail: jbtan10s@imr.ac.cn
作者简介: 史轩铭,男,2000年生,博士生
[1] Bandyopadhyay A, Rej S, Villanthenkodath M A, et al. The role of nuclear energy consumption in abatement of ecological footprint: novel insights from quantile-on-quantile regression [J]. J. Clean. Prod., 2022, 358: 132052
[2] Rong J, Liu Z. Development and prospect of advanced nuclear energy technology [J]. Atom. Energ. Sci. Technol., 2020, 54: 1638
doi: 10.7538/yzk.2020.youxian.0348
[2] 荣 健, 刘 展. 先进核能技术发展与展望 [J]. 原子能科学技术, 2020, 54: 1638
[3] Fazio C, Sobolev V, Aerts A, et al. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermalhydraulics and technologies-2015 edition [R]. Paris: Organisation for Economic Co-Operation and Development, 2015
[4] Abderrahim H A. Multi-purpose hYbrid Research Reactor for High-tech Applications a multipurpose fast spectrum research reactor [J]. Int. J. Energy Res., 2012, 36: 1331.
[5] Riznic J. Handbook of generation IV nuclear reactors edition 2 [J]. J. Nucl. Eng. Radiat. Sci., 2023, 9: 036501
[6] Gong X, Short M P, Auger T, et al. Environmental degradation of structural materials in liquid lead- and lead-bismuth eutectic-cooled reactors [J]. Prog. Mater. Sci., 2022, 126: 100920
[7] Zhang X Y, Li C, Wang Y X, et al. Research progress on liquid metal corrosion behavior of structural steels for lead fast reactor [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1216
[7] 张心怡, 李 聪, 汪禹熙 等. 铅基堆结构材料液态金属腐蚀行为的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 1216
doi: 10.11902/1005.4537.2022.338
[8] Murty K L, Charit I. Structural materials for Gen-IV nuclear reactors: challenges and opportunities [J]. J. Nucl. Mater., 2008, 383: 189
[9] Gong X, Li R, Sun M Z, et al. Opportunities for the LWR ATF materials development program to contribute to the LBE-cooled ADS materials qualification program [J]. J. Nucl. Mater., 2016, 482: 218
[10] Yvon P, Carré F. Structural materials challenges for advanced reactor systems [J]. J. Nucl. Mater., 2009, 385: 217
[11] Gong X, Marmy P, Qin L, et al. Effect of liquid metal embrittlement on low cycle fatigue properties and fatigue crack propagation behavior of a modified 9Cr-1Mo ferritic-martensitic steel in an oxygen-controlled lead-bismuth eutectic environment at 350 ℃ [J]. Mater. Sci. Eng., 2014, 618A: 406
[12] Gong X, Marmy P, Qin L, et al. Temperature dependence of liquid metal embrittlement susceptibility of a modified 9Cr-1Mo steel under low cycle fatigue in lead-bismuth eutectic at 160-450 ℃ [J]. J. Nucl. Mater., 2016, 468: 289
[13] Gong X, Marmy P, Verlinden B, et al. Low cycle fatigue behavior of a modified 9Cr-1Mo ferritic-martensitic steel in lead-bismuth eutectic at 350 ℃-effects of oxygen concentration in the liquid metal and strain rate [J]. Corros. Sci., 2015, 94: 377
[14] Gong X, Marmy P, Volodin A, et al. Multiscale investigation of quasi-brittle fracture characteristics in a 9Cr-1Mo ferritic-martensitic steel embrittled by liquid lead-bismuth under low cycle fatigue [J]. Corros. Sci., 2016, 102: 137
[15] Gong X, Marmy P, Yin Y. The role of oxide films in preventing liquid metal embrittlement of T91 steel exposed to liquid lead-bismuth eutectic [J]. J. Nucl. Mater., 2018, 509: 401
[16] Xue B Q, Tan J B, Zhang Z Y, et al. Effect of temperature on low cycle fatigue behavior of T91 steel in liquid lead-bismuth eutectic environment at 150-550 ℃ [J]. Int. J. Fatigue, 2023, 167: 107344
[17] Yas'kiv O I, Fedirko V M, Kukhar I S. Effect of lead and lead-bismuth eutectic melts on the fatigue life of steels of the martensitic and austenitic classes [J]. Mater. Sci., 2014, 50: 102
[18] Weisenburger A, Heinzel A, Fazio C, et al. Low cycle fatigue tests of surface modified T91 steel in 10-6 wt% oxygen containing Pb45Bi55 at 550 ℃ [J]. J. Nucl. Mater., 2008, 377: 261
[19] Verleene A, Vogt J B, Serre I, et al. Low cycle fatigue behaviour of T91 martensitic steel at 300 ℃ in air and in liquid lead bismuth eutectic [J]. Int. J. Fatigue, 2006, 28: 843
[20] Kalkhof D, Grosse M. Influence of PbBi environment on the low-cycle fatigue behavior of SNS target container materials [J]. J. Nucl. Mater., 2003, 318: 143
[21] Ding J H, Tan J B, Zhang Z Y, et al. Low cycle fatigue behavior of 316LN stainless steel hollow specimen in air and liquid lead-bismuth eutectic [J]. Int. J. Fatigue, 2023, 175: 107812
[22] Marmy P, Gong X. LIMETS 3, a novel system for high strain fatigue testing in lead-bismuth eutectic [J]. J. Nucl. Mater., 2014, 450: 256
[23] Vogt J B, Proriol-Serre I. Fatigue behaviour of a martensitic and an austenitic steel in heavy liquid metals [J]. Procedia Eng., 2013, 55: 812
[24] Van Den Bosch J, Sapundjiev D, Almazouzi A. Effects of temperature and strain rate on the mechanical properties of T91 material tested in liquid lead bismuth eutectic [J]. J. Nucl. Mater., 2006, 356: 237
[25] Lynch S P. Mechanisms and kinetics of environmentally assisted cracking: current status, issues, and suggestions for further work [J]. Metall. Mater. Trans., 2013, 44A: 1209
[26] Ye C Q, Vogt J B, Serre I P. Liquid metal embrittlement of the T91 steel in lead bismuth eutectic: the role of loading rate and of the oxygen content in the liquid metal [J]. Mater. Sci. Eng., 2014, 608A: 242
[27] Auger T, Lorang G. Liquid metal embrittlement susceptibility of T91 steel by lead-bismuth [J]. Scr. Mater., 2005, 52: 1323
[28] Hojna A, Hadraba H, Di Gabriele F, et al. Behaviour of pre-stressed T91 and ODS steels exposed to liquid lead-bismuth eutectic [J]. Corros. Sci., 2018, 131: 264
[29] Vogt J B, Bouquerel J, Carle C, et al. Stability of fatigue cracks at 350 ℃ in air and in liquid metal in T91 martensitic steel [J]. Int. J. Fatigue, 2020, 130: 105265
[30] Heinzel A, Kondo M, Takahashi M. Corrosion of steels with surface treatment and Al-alloying by GESA exposed in lead-bismuth [J]. J. Nucl. Mater., 2006, 350: 264
[31] Takaya S, Furukawa T, Müller G, et al. Al-containing ODS steels with improved corrosion resistance to liquid lead-bismuth [J]. J. Nucl. Mater., 2012, 428: 125
[32] Müller G, Schumacher G, Zimmermann F. Investigation on oxygen controlled liquid lead corrosion of surface treated steels [J]. J. Nucl. Mater., 2000, 278: 85
[33] Weisenburger A, Heinzel A, Müller G, et al. T91 cladding tubes with and without modified FeCrAlY coatings exposed in LBE at different flow, stress and temperature conditions [J]. J. Nucl. Mater., 2008, 376: 274
[34] Weisenburger A, Jianu A, An W, et al. Creep, creep-rupture tests of Al-surface-alloyed T91 steel in liquid lead bismuth at 500 and 550 ℃ [J]. J. Nucl. Mater., 2012, 431: 77
[35] Jianu A, Müller G, Weisenburger A, et al. Creep-to-rupture tests of T91 steel in flowing Pb-Bi eutectic melt at 550 ℃ [J]. J. Nucl. Mater., 2009, 394: 102
[36] Long B, Tong Z, Gröschel F, et al. Liquid Pb-Bi embrittlement effects on the T91 steel after different heat treatments [J]. J. Nucl. Mater., 2008, 377: 219
[37] Gong X, Hu F Y, Chen J J, et al. Effect of temperature on liquid metal embrittlement susceptibility of an Fe10Cr4Al ferritic alloy in contact with stagnant lead-bismuth eutectic [J]. J. Nucl. Mater., 2020, 537: 152196
[38] Xue B Q, Wang W, Tan J B, et al. Insights into the fatigue damage mechanism of T91 steel in liquid lead-bismuth eutectic at 150-550 ℃ [J]. Corros. Sci., 2024, 232: 112007
[39] Gorse D, Auger T, Vogt J B, et al. Influence of liquid lead and lead-bismuth eutectic on tensile, fatigue and creep properties of ferritic/martensitic and austenitic steels for transmutation systems [J]. J. Nucl. Mater., 2011, 415: 284
[40] Schroer C, Wedemeyer O, Skrypnik A, et al. Corrosion kinetics of Steel T91 in flowing oxygen-containing lead–bismuth eutectic at 450 ℃ [J]. J. Nucl. Mater., 2012, 431: 105
[41] Zhu Z G, Zhang Q, Tan J B, et al. Corrosion behavior of T91 steel in liquid lead-bismuth eutectic at 550 ℃: effects of exposure time and dissolved oxygen concentration [J]. Corros. Sci., 2022, 204: 110405
[41] Tsisar V, Schroer C, Wedemeyer O, et al. Characterization of corrosion phenomena and kinetics on T91 ferritic/martensitic steel exposed at 450 and 550 ℃ to flowing Pb-Bi eutectic with 10-7 mass% dissolved oxygen [J]. J. Nucl. Mater., 2017, 494: 422
[43] Zhou Z K, Du J, Tian C W, et al. Local mechanical properties of corrosion layers formed on T91 and SS316L steels after exposure to static liquid LBE at 500 ℃ for 1000 h obtained by nano-indentation [J]. Nucl. Eng. Technol., 2024, 56: 3067
[44] Yeliseyeva O, Tsisar V, Benamati G. Influence of temperature on the interaction mode of T91 and AISI 316L steels with Pb-Bi melt saturated by oxygen [J]. Corros. Sci., 2008, 50: 1672
[45] Schroer C, Skrypnik A, Wedemeyer O, et al. Oxidation and dissolution of iron in flowing lead-bismuth eutectic at 450 ℃ [J]. Corros. Sci., 2012, 61: 63
[46] Xu G F, Li Y, Lei Y C, et al. Effect of relative flow velocity on corrosion behavior of high nitrogen austenitic stainless steel in liquid lead-bismuth eutectic alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 899
[46] 徐桂芳, 李 园, 雷玉成 等. 相对流速对高氮奥氏体不锈钢在液态铅铋共晶合金中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 899
doi: 10.11902/1005.4537.2020.161
[47] Chocholousek M, Stergar E, Gong X, et al. Mechanical/microstructural characteristics of environmentally-assisted degradation effects of steels in lead alloys and assessment of environmental degradation effects on performance of structural and functional components of MYRRHA ADS & LFR [J]. MatISSE-D5. 42, 2017
[48] Hamouche-Hadjem Z, Auger T, Guillot I, et al. Susceptibility to LME of 316L and T91 steels by LBE: effect of strain rate [J]. J. Nucl. Mater., 2008, 376: 317
[49] Ersoy F, Verbeken K, Gavrilov S. Influence of displacement rate and temperature on the severity of liquid metal embrittlement of T91 steel in LBE [J]. Mater. Sci. Eng., 2021, 800A: 140259
[50] Schroer C, Konys J. Physical Chemistry of Corrosion and Oxygen Control in Liquid Lead and Lead-Bismuth Eutectic [M]. Karlsruhe: Forschungszentrum Karlsruhe, 2007
[51] Sapundjiev D, Van Dyck S, Bogaerts W. Liquid metal corrosion of T91 and A316L materials in Pb-Bi eutectic at temperatures 400-600 ℃ [J]. Corros. Sci., 2006, 48: 577
[52] Martı́n F J, Soler L, Hernández F, et al. Oxide layer stability in lead-bismuth at high temperature [J]. J. Nucl. Mater., 2004, 335: 194
[53] Zhang J S, Li N. Review of the studies on fundamental issues in LBE corrosion [J]. J. Nucl. Mater., 2008, 373: 351
[54] Vogt J B, Verleene A, Serre I, et al. Understanding the liquid metal assisted damage sources in the T91 martensitic steel for safer use of ADS [J]. Eng. Fail. Anal., 2007, 14: 1185
[55] Liu T, Hui J, Zhang B L, et al. Corrosion mechanism of lead-bismuth eutectic at grain boundary in ferritic steels and the effect of alloying elements: a first-principles study [J]. J. Nucl. Mater., 2022, 569: 153915
[56] Pan Z Y, Liu J, Jiang Z Z, et al. Corrosion behavior of Fe34Cr30Mo15Ni15Nb3Al3 high-entropy alloy in molten Pb-Bi eutectic containing 10-6% oxygen at 500 ℃ [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1353
[56] 潘宗宇, 刘 静, 姜志忠 等. Fe34Cr30Mo15Ni15Nb3Al3高熵合金在500 ℃下氧含量为10-6%的液态铅铋合金中腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1353
doi: 10.11902/1005.4537.2023.331
[57] Schroer C, Konys J. Quantification of the long-term performance of steels T91 and 316L in oxygen-containing flowing lead-bismuth eutectic at 550 ℃ [J]. J. Eng. Gas. Turbines Power, 2010, 132: 082901
[58] Gong X, Chen H T, Wang Z H, et al. Effects of pre-exposure and simulated corrosion “pits” on liquid metal embrittlement of T91 steel exposed to liquid lead-bismuth eutectic at 350 ℃ [J]. J. Nucl. Mater., 2022, 563: 153641
[59] Ersoy F, Gavrilov S, Verbeken K. Investigating liquid-metal embrittlement of T91 steel by fracture toughness tests [J]. J. Nucl. Mater., 2016, 472: 171
[60] Feng J H, Liu Z, Shi S W, et al. Fracture behaviors of modified 9Cr-1Mo steels in liquid lead-bismuth eutectic immersion environment using in-situ testing technique [J]. Eng. Fract. Mech., 2023, 292: 109661
[61] Jiang Y C. First-principles study on the effect of alloying elements on the mechanical properties of Fe [D]. Changsha: Central South University, 2022
[61] 姜昱川. 合金元素影响Fe力学性能的第一性原理研究 [D]. 长沙: 中南大学, 2022
[62] Zhao J, Jiang Y C, Sun L, et al. Effect of alloying elements on stacking fault energy and ductility of iron [J]. Vacuum, 2021, 194: 110633
[63] Bichuya A L, Popovich V V, Zamora M F, et al. The fatigue strength, in a Pb-Bi eutectic melt, of steel 15KhS1MFB smelted in the ordinary way and in vacuo [J]. Mater. Sci., 1973, 7: 336
[64] Balandin Y F, Divisenko I F. Strength and ductility of a type 12 KhM heat-resistant steel in contact with liquid Pb-Bi eutectic [J]. Mater. Sci., 1973, 6: 732
[65] Kolman D G. A review of recent advances in the understanding of liquid metal embrittlement [J]. Corrosion, 2019, 75: 42
doi: 10.5006/2904
[66] Rostoker W, McCaughey J M, Markus H. Embrittlement by Liquid Metals [M]. New York: Reinhold Publishing Corporation, 1960.
[67] Westwood A R C, Kamdar M H. Concerning liquid metal embrittlement, particularly of zinc monocrystals by mercury [J]. Philos. Mag., 1963, 8: 787
[68] Stoloff N S, Johnston T L. Crack propagation in a liquid metal environment [J]. Acta Metall., 1963, 11: 251
[69] Lynch S P. Environmentally assisted cracking: overview of evidence for an adsorption-induced localised-slip process [J]. Acta Metall., 1988, 36: 2639
[70] Hancock P C, Ives M B. The role of plastic deformation in liquid metal embrittlement [J]. Can. Metall. Quart., 1971, 10: 207
[71] Gordon P, An H H. The mechanisms of crack initiation and crack propagation in metal-induced embrittlement of metals [J]. Metall. Trans., 1982, 13A: 457
[72] Robertson W M. Propagation of a crack filled with liquid metal [R]. Thousand Oaks: North American Aviation Science Center, 1966
[73] Xue B Q, Tan J B, Wu X Q, et al. Insights into fatigue crack propagation mechanism of T91 steel in liquid lead-bismuth eutectic at 150-450 ℃ [J]. Corros. Sci., 2024, 236: 112264
[1] 赵连红, 王英芹, 刘元海, 何卫平, 王浩伟. 四种飞机起落架用钢在模拟海水中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1263-1273.
[2] 和雅洁, 陈灵芝, 阮章顺, 付晓刚, 纪琤, 龙斌. 小冲杆技术及其在材料与铅铋脆化效应研究中的应用[J]. 中国腐蚀与防护学报, 2024, 44(3): 567-575.
[3] 何训, 吴梦雪, 尹力, 朱金. 风-车流耦合作用下悬索桥吊索钢丝的双蚀坑损伤演化及疲劳寿命研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1358-1366.
[4] 张心怡, 李聪, 汪禹熙, 黄美, 朱卉平, 刘芳, 刘洋, 牛风雷. 铅基堆结构材料液态金属腐蚀行为的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1216-1224.
[5] 陈震宇, 朱忠亮, 马辰昊, 张乃强, 刘宇桐. 加载条件对镍基617合金在超临界水中腐蚀疲劳裂纹扩展速率的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1057-1063.
[6] 刘冬, 刘静, 黄峰, 杜丽影. 海洋工程结构用钢服役环境模拟及DH36钢腐蚀疲劳裂纹扩展性能研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 959-965.
[7] 王歧山, 李鸿瑾, 何川, 郑平, 陈旭. 加载波形对X65钢腐蚀疲劳裂纹萌生及扩展的影响[J]. 中国腐蚀与防护学报, 2022, 42(2): 227-234.
[8] 张兹瑜, 吴欣强, 韩恩厚, 柯伟. 核电结构材料腐蚀疲劳裂纹扩展行为研究现状与进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 9-15.
[9] 徐桂芳, 李园, 雷玉成, 朱强. 相对流速对高氮奥氏体不锈钢在液态铅铋共晶合金中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 899-904.
[10] 孙晓光, 王子晗, 徐学旭, 韩晓辉, 李刚卿, 刘智勇. 工业大气环境对Al-Mg-Si合金腐蚀疲劳特性的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 501-507.
[11] 廖家鹏,吴欣强. 核电材料高温高压水缺口疲劳性能研究现状与进展[J]. 中国腐蚀与防护学报, 2018, 38(6): 511-516.
[12] 刘晓强,徐雪莲,谭季波,王媛,吴欣强,郑宇礼,孟凡江,韩恩厚. 反应堆冷却剂环境对690合金传热管疲劳性能影响研究[J]. 中国腐蚀与防护学报, 2015, 35(3): 213-219.
[13] 梁瑞, 张新燕, 李淑欣, 姜峰, 陈帅甫. 半椭球蚀坑对圆棒应力集中的影响[J]. 中国腐蚀与防护学报, 2013, 33(6): 532-536.
[14] 谭季波,吴欣强,韩恩厚. 动态应变时效对核电材料环境致裂影响的研究现状与进展[J]. 中国腐蚀与防护学报, 2012, 32(6): 437-442.
[15] 周华茂 王俭秋 张波 韩恩厚 臧启山. 轧制AZ31B镁合金腐蚀疲劳过程中的声发射信号分析[J]. 中国腐蚀与防护学报, 2009, 29(2): 81-87.