Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (5): 1339-1344     CSTR: 32134.14.1005.4537.2023.388      DOI: 10.11902/1005.4537.2023.388
  研究报告 本期目录 | 过刊浏览 |
大气腐蚀监测Cu-Zn探针环境因素敏感性和腐蚀影响
张昊1, 陈俊航1, 胡为峰2, 张新3, 董超芳1, 肖葵1()
1 北京科技大学新材料技术研究院 北京 100083
2 北京赛亿科技有限公司 北京 100083
3 北京科大分析检验中心有限公司 北京 100083
Environmental Factor Sensitivity and Corrosion Effect of Cu-Zn Probe for Atmospheric Corrosion Monitoring
ZHANG Hao1, CHEN Junhang1, HU Weifeng2, ZHANG Xin3, DONG Chaofang1, XIAO Kui1()
1 Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2 Beijing Suryee Science & Technology Co., Ltd., Beijing 100083, China
3 Testing Center of University of Science and Technology Beijing Co., Ltd., Beijing 100083, China
引用本文:

张昊, 陈俊航, 胡为峰, 张新, 董超芳, 肖葵. 大气腐蚀监测Cu-Zn探针环境因素敏感性和腐蚀影响[J]. 中国腐蚀与防护学报, 2024, 44(5): 1339-1344.
Hao ZHANG, Junhang CHEN, Weifeng HU, Xin ZHANG, Chaofang DONG, Kui XIAO. Environmental Factor Sensitivity and Corrosion Effect of Cu-Zn Probe for Atmospheric Corrosion Monitoring[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(5): 1339-1344.

全文: PDF(8756 KB)   HTML
摘要: 

探讨了Cu-Zn探头在不同温度、NaCl浓度、NaHSO3浓度以及NaCl和NaHSO3混合溶液的盐雾环境下的腐蚀行为,以及Cu-Zn探头积分电量的变化规律。研究结果表明,Cu-Zn探头对温度、NaCl浓度、NaHSO3浓度以及二者混合体系浓度的变化具有高度敏感性,表现出较为显著的灵敏度。在综合考虑各因素的基础上,Cu-Zn探头的腐蚀影响顺序为:温度<NaCl浓度<NaHSO3浓度<NaCl和NaHSO3混合浓度。

关键词 ACM技术Cu-Zn探头盐雾试验积分电量    
Abstract

The corrosion behavior of Cu-Zn probe, used for atmospheric corrosion monitoring (ACM), was studied at different temperatures via salt spray testing with NaCl solutions, NaHSO3 solutions, and NaCl and NaHSO3 mixed solutions of varying concentration respectively. Correspondingly, the variation of the integrated charge quantity of Cu-Zn probes was also acquired with the testing conditions. The results indicate that the Cu-Zn probe is highly sensitive to the variation of test temperature, NaCl concentration, NaHSO3 concentration, and the concentration of the mixed ones, exhibiting significant sensitivity. On the basis of comprehensive consideration of various factors, the order of corrosion impact for Cu-Zn probes is as follows: temperature < NaCl concentration < NaHSO3 concentration < concentration of NaCl and NaHSO3 mixture.

Key wordsACM technology    Cu-Zn probe    salt spray test    integrated charge quantity
收稿日期: 2023-12-12      32134.14.1005.4537.2023.388
ZTFLH:  TG174  
基金资助:国防科技工业技术基础科研项目(JSHS2020209B001)
通讯作者: 肖葵,E-mail:xiaokui@ustb.edu.cn,研究方向为腐蚀与防护
Corresponding author: XIAO Kui, E-mail: xiaokui@ustb.edu.cn
作者简介: 张 昊,男,1999年生,博士生
图 1  ACM腐蚀探头示意图
图2  Cu-Zn腐蚀探头宏观形貌
图3  Cu-Zn探头的ACM积分电量随温度的变化关系
图4  不同NaCl浓度盐雾试验Cu-Zn腐蚀探头的宏观形貌
图5  Cu-Zn腐蚀探头的ACM积分电量随NaCl浓度的变化趋势
图6  不同NaHSO3浓度盐雾试验Cu-Zn腐蚀探头的宏观形貌
图7  Cu-Zn腐蚀探头的ACM积分电量随NaHSO3浓度的变化关系
图8  NaHSO3浓度为0.05%,不同NaCl浓度盐雾试验Cu-Zn腐蚀探头的宏观形貌
图9  Cu-Zn腐蚀探头的ACM积分电量随混合浓度的变化关系
1 Ke W. China corrosion investigation report [J]. Corros. Sci. Prot. Technol., 2004, (1): 62
1 柯 伟. 中国腐蚀调查报告 [J]. 腐蚀科学与防护技术, 2004, (1): 62
2 Zhang Q F, Liu B J, Zhong H F. Development trend of hot-dip galvanizing technology [J]. J. Iron Steel Res, 2002, 14(4): 65
2 张启富, 刘邦津, 仲海峰. 热镀锌技术的最新进展 [J]. 钢铁研究学报, 2002, 14(4): 65
3 Qu Q, Yan C W, Cao C N. Progress in experimental methods for atmospheric corrosion of metals [J]. Corros. Sci. Prot. Technol., 2003, 15: 216
3 屈 庆, 严川伟, 曹楚南. 金属大气腐蚀实验技术进展 [J]. 腐蚀科学与防护技术, 2003, 15: 216
4 Liang C F, Hou W T. Sixteen-year atmospheric corrosion exposure study of steels [J]. J. Chin. Soc. Corros. Prot., 2005, 25(1): 2
4 梁彩凤, 侯文泰. 碳钢、低合金钢16年大气暴露腐蚀研究 [J]. 中国腐蚀与防护学报, 2005, 25(1): 1
5 Ye D, Zhao D W, Li J, et al. Study on the effects of air pollution on corrosion of carbon steel [J]. J. Chongqing Jianzhu Univ., 2005, 27(1): 80
5 叶 堤, 赵大为, 李 娟 等. 大气污染对碳钢的腐蚀影响研究 [J]. 重庆建筑大学学报, 2005, 27(1): 80
6 Li X L. Reviews on investigation networks for atomspheric corrosion and suggestions on coming development [J]. Mater Prot, 2000, 33(1): 20
6 李兴濂. 我国大气腐蚀网站试验研究回顾及发展建议 [J]. 材料保护, 2000, 33(1): 20
7 Zhang X Y, Han E H, Li H X. Estimation of the corrosion losses by the acidic Rain in China [J]. J. Chin. Soc. Corros. Prot., 2002, 22: 316
7 张学元, 韩恩厚, 李洪锡. 中国的酸雨对材料腐蚀的经济损失估算 [J]. 中国腐蚀与防护学报, 2002, 22: 316
8 Jiang J X, Zhang P F, Gao M T. Metal Corrosion [M]. Beijing: National Defense Industry Press, 1986
8 蒋金勋, 张佩芬, 高满同. 金属腐蚀学 [M]. 北京: 国防工业出版社, 1986
9 Saijo Y, Ueki M, Watanabe H, et al. Monitoring technology for automobile corrosive environments [J]. SAE Int. J. Mater. Manf., 2015, 8: 534
10 Li X G, Zhang D W, Liu Z Y, et al. Materials science: share corrosion data [J]. Nature, 2015, 527: 441
11 Pei Z B, Zhang D W, Zhi Y J, et al. Towards understanding and prediction of atmospheric corrosion of an Fe/Cu corrosion sensor via machine learning [J]. Corros. Sci., 2020, 170: 108697
12 Pei Z B, Cheng X Q, Yang X J, et al. Understanding environmental impacts on initial atmospheric corrosion based on corrosion monitoring sensors [J]. J. Mater. Sci. Technol., 2021, 64: 214
doi: 10.1016/j.jmst.2020.01.023
13 Wang Z Y, Ma T, Han W, et al. Corrosion behavior on aluminum alloy LY12 in simulated atmospheric corrosion process [J]. Trans. Nonferr. Met. Soc. China, 2007, 17: 326
14 Huang Y L, Yang D, Xu Y, et al. Field study of weather conditions affecting atmospheric corrosion by an automobile-carried atmospheric corrosion monitor sensor [J]. J. Mater. Eng. Perform., 2020, 29: 5840
15 Shinohara T, Motoda S I, Oshikawa W. Evaluation of corrosivity in atmospheric environment by ACM (atmospheric corrosion monitor) type corrosion sensor [J]. Mater. Sci. Forum, 2005, 475-479: 61
16 Cao X L, Deng H D, Lan W, et al. Electrochemical investigation on atmospheric corrosion of carbon steel under different environmental parameters [J]. Anti-Corros. Method Mater., 2013, 60: 199
17 Wang X M, Li X G, Tian X L. Influence of temperature and relative humidity on the atmospheric corrosion of zinc in field exposures and laboratory environments by atmospheric corrosion monitor [J]. Int. J. Electrochem. Sci., 2015, 10: 8361
18 de la Fuente D, Castaño J G, Morcillo M. Long-term atmospheric corrosion of zinc [J]. Corros. Sci., 2007, 49: 1420
19 Qiao C, Shen L F, Hao L, et al. Corrosion kinetics and patina evolution of galvanized steel in a simulated coastal-industrial atmosphere [J]. J. Mater. Sci. Technol., 2019, 35: 2345
doi: 10.1016/j.jmst.2019.05.039
20 Yin Q, Wang Z Y, Pan C. Initial corrosion behavior of pure zinc in simulated tropical marine atmosphere [J]. T. Nonferr. Met. Soc. China, 2018, 28: 2582
21 Yin Q, Wang Z Y, Liu M R, et al. Synergistic effect of NaCl and SO2 on the initial atmospheric corrosion of Zinc under wet-dry cyclic conditions [J]. Acta Metall. Sin. Engl. Lett., 2019, 32: 780
[1] 常雪婷, 宋嘉琪, 王冰, 王东胜, 陈文聪, 王海丰. 微合金化对高锰奥氏体钢在酸性盐雾环境下的耐蚀性能影响研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 47-58.
[2] 王军, 陈军君, 谢亿, 徐松, 刘兰兰, 吴堂清, 尹付成. 湖南地区大气腐蚀严酷性的环境因素与大气腐蚀监测仪评定[J]. 中国腐蚀与防护学报, 2021, 41(4): 487-492.
[3] 毕强, 张平则,黄俊,魏东博,李伟. 双辉等离子渗Ta改性层的组织及耐蚀性[J]. 中国腐蚀与防护学报, 2012, 32(5): 364-368.
[4] 林继月, 刘光明,陈刚. DDS含量对有机硅/SiO2杂化涂层性能的影响[J]. 中国腐蚀与防护学报, 2011, 31(2): 116-120.
[5] 付瑞东,何淼,栾国红,董春林,康举. 酸性盐雾下2024铝合金搅拌摩擦焊接头的腐蚀行为[J]. 中国腐蚀与防护学报, 2010, 30(5): 396-402.
[6] 崔继红, 蔡建平,贾成厂. 盐雾环境下高强度铝合金的点蚀行为[J]. 中国腐蚀与防护学报, 2010, 30(3): 197-202.
[7] 栾国红,付瑞东,董春林,何淼,康举. 中性盐雾下7075铝合金搅拌摩擦焊焊缝的腐蚀行为[J]. 中国腐蚀与防护学报, 2010, 30(3): 236-240.
[8] 李壮,夏鸣,关蓬莱,郭向民. TRIP钢在3.5%NaCl 溶液中的腐蚀电化学行为[J]. 中国腐蚀与防护学报, 2010, 30(3): 203-206.
[9] 蒋百灵; 张淑芬; 吴国建 . 镁合金微弧氧化陶瓷层耐蚀性的研究[J]. 中国腐蚀与防护学报, 2002, 22(5): 300-303 .