Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (3): 739-746     CSTR: 32134.14.1005.4537.2024.204      DOI: 10.11902/1005.4537.2024.204
  研究报告 本期目录 | 过刊浏览 |
华龙一号核电机组主泵化学去污工艺研究
张鼎纹1, 张冀兰1, 于义军1, 任科1, 丁强1, 史慧梅1, 杨新辉1, 王元伟1, 张雪峰1, 吴多东1, 刘锋2, 冯兴宇3, 刘朋帅4, 匡文军3,4()
1.华能海南昌江核电有限公司 昌江 572733
2.西安热工研究院有限公司 西安 710054
3.华南理工大学材料科学与工程学院 广州 510641
4.西安交通大学材料科学与工程学院 西安 710049
Chemical Decontamination Process for Main Pump of Hualong One PWR
ZHANG Dingwen1, ZHANG Jilan1, YU Yijun1, REN Ke1, DING Qiang1, SHI Huimei1, YANG Xinhui1, WANG Yuanwei1, ZHANG Xuefeng1, WU Duodong1, LIU Feng2, FENG Xingyu3, LIU Pengshuai4, KUANG Wenjun3,4()
1.Huaneng Hainan Changjiang Nuclear Power Co., Ltd., Changjiang 572733, China
2.Xi'an Thermal Power Research Institute Co., Ltd., Xi'an 710054, China
3.School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
4.School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
引用本文:

张鼎纹, 张冀兰, 于义军, 任科, 丁强, 史慧梅, 杨新辉, 王元伟, 张雪峰, 吴多东, 刘锋, 冯兴宇, 刘朋帅, 匡文军. 华龙一号核电机组主泵化学去污工艺研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 739-746.
Dingwen ZHANG, Jilan ZHANG, Yijun YU, Ke REN, Qiang DING, Huimei SHI, Xinhui YANG, Yuanwei WANG, Xuefeng ZHANG, Duodong WU, Feng LIU, Xingyu FENG, Pengshuai LIU, Wenjun KUANG. Chemical Decontamination Process for Main Pump of Hualong One PWR[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(3): 739-746.

全文: PDF(14116 KB)   HTML
摘要: 

压水堆一回路部件放射性去污是核电站大修期间的重要工序,而部件表面含活化腐蚀产物的有效清除直接关系到检修人员安全。为此,本文针对华龙一号机组压水堆核电站的冷却剂主循环泵材料X3CrNiMo13-4,通过对模拟氧化膜的溶解腐蚀实验,对比分析了溶液组成和工艺参数对氧化物清除效果的影响。同时,结合扫描电子显微镜(SEM),评价了去污工艺对合金基体的损伤,并优化了去污处理工艺。结果表明,用柠檬酸+ DTPA溶液清洗与酸性高锰酸钾氧化工艺交替进行可实现对氧化膜的有效清除。与碱性高锰酸钾相比,酸性高锰酸钾溶液对材料腐蚀产物的清除效果更好且不会损伤合金基体。

关键词 压水堆一回路氧化物去污工艺    
Abstract

The radioactive decontamination of the primary circuit components of the pressurized water reactors (PWRs) is an important process during the overhaul of the nuclear power plant. The effective removal of activated corrosion products on the surface of structural components is directly related to the safety of maintenance personnel. Herein, the X3CrNiMo13-4 steel, used in the main coolant circulating pump of Hualong One PWR, was oxidized in an autoclave to form a pre-oxide scale, as a simulation of the oxide scale formed on its surface in the PWR. Then the influence of the composition of decontamination solution and the process parameter on the removal effectiveness of the simulated oxide scale was compared and analyzed, meanwhile the possible deterioration effect of the decontamination process on the steel matrix was also evaluated using scanning electron microscopy (SEM). The results show that the simulated oxide scale can be effectively removed through alternative treatments of citric acid + DTPA solution cleaning and acidic potassium permanganate oxidation. Compared with alkaline potassium permanganate, the acid potassium permanganate solution has a better removal effect on the corrosion products of the X3CrNiMo13-4 steel without damaging the alloy steel matrix.

Key wordspressurized water reactors    primary loop    oxide    decontamination process
收稿日期: 2024-07-09      32134.14.1005.4537.2024.204
ZTFLH:  TG174  
基金资助:华能集团科技项目(HNKJ21-HF329)
通讯作者: 匡文军,E-mail:20241150@scut.edu.cn,研究方向为核材料环境损伤及新材料研发
Corresponding author: KUANG Wenjun, E-mail: 20241150@scut.edu.cn
作者简介: 张鼎纹,男,1987年生,工程师
图1  模拟氧化试验样品示意图
NumberSolution and implementation timeProcess steps (PS)
12.0% Citric acid + 0.1% Sodium Ascorbate, 24 h-
21.5% Citric acid + 0.5%DTPA + 0.1% Sodium Ascorbate, 24 h-
3①1.5%HNO3 + 1.5%KMnO4, 4 h①→②→①→②→①→②
②1.5% Citric acid + 0.5%DTPA + 0.1% Sodium Ascorbate, 4 h
4①1.5% Citric acid + 0.5%DTPA + 0.1% Sodium Ascorbate, 4 h①→②→①→②→①
②1.5%HNO3 + 1.5%KMnO4, 4 h
5①1.5% Citric acid +0.5%DTPA + 0.1% Sodium Ascorbate, 4 h①→②→①→②→①
②1.5%NaOH + 1.5%KMnO4, 4 h
6①2.0% Citric acid + 0.1% Sodium Ascorbate, 4 h①→②→①→②→①
②1.5%HNO3 + 1.5%KMnO4, 4 h
表1  化学去污工艺及实施步骤
图2  X3CrNiMo13-4表面氧化膜的SEM图和面扫结果
图3  X3CrNiMo13-4氧化膜横截面形貌
图4  工艺1和2实施前后试样表面形貌和去污处理后溶液颜色变化
图5  工艺3实施过程中试样宏观形貌变化
图6  工艺4实施过程中试样宏观形貌变化
图7  工艺5实施过程中试样宏观形貌变化
图8  工艺6实施过程中试样宏观形貌变化
图9  工艺4和6柠檬酸溶液中Fe离子和Cr离子浓度变化
图10  实施工艺4后材料SEM像
图11  实施工艺4后表面元素信号强度沿深度方向分布
图12  原始试样实施工艺4前后光学显微形貌
[1] Ji Y F, Hao L, Wang J Q, et al. Research progress on compatibility between alkalizing agents and materials in PWR secondary circuit [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 267
[1] 冀跃飞, 郝 龙, 王俭秋 等. 压水堆二回路碱化剂与材料的相容性研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 267
[2] Gao J W, Xue N, Qiu L, et al. Enlightenment of three serious nuclear accidents to the development of pressurized water reactor in China [J]. China Nucl. Power, 2023, 16: 907
[2] 高健伟, 薛 娜, 邱 林 等. 三次严重事故对中国压水堆核电发展的启示 [J]. 中国核电, 2023, 16: 907
[3] Fan M D. Reliability evaluation of control rod drive mechanism penetration nozzle and hold down spring of pressurized water reactor considering service environment [D]. Hefei: University of Science and Technology of China, 2023
[3] 范牡丹. 考虑服役环境的压水堆控制棒驱动机构贯穿喷嘴和压紧弹簧可靠性评估 [D]. 合肥: 中国科学技术大学, 2023
[4] Liu B, Li X M, Song L J, et al. Development of in-service chemical decontamination technologies for PWR NPPs [J]. Radiat. Prot. Bull., 2015, 35(2): 16
[4] 刘 斌, 李新民, 宋利君 等. 压水堆核电站在役化学去污工艺进展 [J]. 辐射防护通讯, 2015, 35(2): 16
[5] Liu B, Li X M, Song L J, et al. Chemical decontamination of primary loop elbow and verification test in nuclear power plant [J]. J. Nucl. Radiochem., 2018, 40: 388
[5] 刘 斌, 李新民, 宋利君 等. 核电厂主回路弯头化学去污及验证试验 [J]. 核化学与放射化学, 2018, 40: 388
[6] Kenchiku I, translated by Zuo M, Li X Q. Decontamination Technology of Nuclear Facilities [M]. Beijing: Atomic Energy Press, 1997
[6] 石榑显吉著, 左民, 李学群 译. 核设施去污技术 [M]. 北京: 原子能出版社, 1997
[7] Fu D F. Preparation of low temperature decontamination agent and study on its decontamination characteristics to simulated radioactive pollution [D]. Mianyang: Southwest University of Science and Technology, 2020
[7] 付登峰. 低温去污剂的制备及其对模拟放射性污染的去污特性研究 [D]. 绵阳: 西南科技大学, 2020
[8] Homonnay Z, Kuzmann E, Varga K, et al. Comprehensive investigation of the corrosion state of the heat exchanger tubes of steam generators. Part II. Chemical composition and structure of tube surfaces [J]. J. Nucl. Mater., 2006, 348: 191
[9] USEPA. Technology reference guide for radiologically contaminated surfaces [R]. Washington: USEPA, 2006
[10] Steinkuhler C, Lenie K, Coomans R. Experience in chemical decontamination of PWR systems and components [A]. Proceedings of the 12th International Conference on Environmental Remediation and Radioactive Waste Management [C]. Liverpool, 2009: 93
[11] Velmurugan S, Rufus A L, Sathyaseelan V S, et al. Experience with dilute chemical decontamination in Indian pressurized heavy water reactors [J]. Energy Procedia, 2011, 7: 645
[12] Yang I J, Teng M Y, Huan W I, et al. Decontamination of the reactor coolant pump in Maanshan nuclear power plant [J]. Nucl. Eng. Des., 1996, 167: 91
[13] Wu Q, Wang C, Zhang J B, et al. Study of martensite stainless-steel of charging pump decontamination [J]. Radiat. Prot., 2009, 29: 50
[13] 邬 强, 王 川, 张建博 等. 马氏体不锈钢上充泵的去污研究 [J]. 辐射防护, 2009, 29: 50
[14] Wu Q, Wang C. Application and discussion of charging pump decontamination for pressurized water reactor nuclear power station [J]. At. Energy Sci. Technol., 2009, 43: 174
[14] 邬 强, 王 川. 压水堆核电站上充泵的去污实践及其理论探讨 [J]. 原子能科学技术, 2009, 43: 174
[15] Wu Q, Cui H L, Wang C. Study on application of joint decontamination technology in nuclear power plant [J]. Appl. Chem. Ind., 2007, 36: 90
[15] 邬 强, 崔慧玲, 王 川. 超声波-化学去污工艺在核电厂的应用研究 [J]. 应用化工, 2007, 36: 90
[16] Zhu M S, Chen D W, Yang H R, et al. Optimization and analysis of main coolant pump decontamination schemes in Tianwan nuclear power station [J]. Radiat. Prot., 2010, 30: 181
[16] 朱明山, 陈大武, 杨浩然 等. 田湾核电站主泵检修去污方案的优化选择和分析 [J]. 辐射防护, 2010, 30: 181
[17] Zhang C. The Application of chemical-ultrasonic-decontamination to RCP Inner Part [J]. Radiat. Prot. Bull., 2012, 32(4): 29
[17] 张 驰. 化学-超声波联合去污法在主泵内插件上的应用 [J]. 辐射防护通讯, 2012, 32(4): 29
[18] Kinnunen P. ANTIOXI-Decontamination techniques for activity removal in nuclear environments [R]. Brussels: European Commission, 2008
[1] 赵菲, 王东伟, 郭泉忠, 汪川. RGO-CNTs杂化材料改性RuO2-IrO2-SnO2/Ti阳极的性能研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 787-794.
[2] 董子烨, 吴毅恒, 卢翀, 沈朝, 曾小勤. 固体氧化物燃料电池金属连接体研究进展[J]. 中国腐蚀与防护学报, 2025, 45(1): 46-60.
[3] 王碧辉, 刘聚, 崔志翔, 肖博, 杨天让, 张乃强. 电泳沉积制备MnCo尖晶石涂层的高温长期稳定性研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 972-978.
[4] 李禅, 王庆田, 杨承刚, 张宪伟, 韩冬傲, 刘雨薇, 刘智勇. 904L超级奥氏体不锈钢在模拟核电一回路环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 716-724.
[5] 顾玉慧, 董亮, 宋沁峰. 微型金属氧化物pH电极的制备及腐蚀防护应用进展[J]. 中国腐蚀与防护学报, 2023, 43(5): 971-982.
[6] 吴嘉豪, 吴量, 姚文辉, 袁媛, 谢治辉, 王敬丰, 潘复生. Mg-Gd-Y-Zn-Mn合金不同微弧氧化表面MgAlLa层状双羟基金属氧化物复合涂层的性能研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 693-703.
[7] 蒋芳芳, 云虹, 彭莉, 张依豪, 李卫顺, 代文静, 王保峰, 徐群杰. 原位聚合聚苯胺改性NiFe-LDH复合涂层的防护性能研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 312-320.
[8] 赵艳亮, 赵景茂. 层状双金属氢氧化物对镁合金的保护作用及自愈性能研究进展[J]. 中国腐蚀与防护学报, 2023, 43(1): 1-5.
[9] 王碧辉, 肖博, 潘佩媛, 刘聚, 张乃强. 固体氧化物燃料电池金属连接体腐蚀研究进展[J]. 中国腐蚀与防护学报, 2023, 43(1): 6-12.
[10] 廖家鹏, 毛玉龙, 金德升, 厉井钢. 锆合金包壳在模拟压水堆一回路冷却剂中的表面污垢沉积行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 197-201.
[11] 解磊鹏, 陈明辉, 王金龙, 王福会. 放电等离子烧结超细晶ODS镍基合金的高温氧化行为研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 709-716.
[12] 王超逸, 夏呈祥, 王东胜, 强强, 赵子铭, 常雪婷. 新型F级船用低温钢表面氧化物对其耐磨性能影响研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 395-402.
[13] 刘术辉, 刘斌, 徐大伟, 刘蔚, 陈凡伟, 刘思琪. 层状双金属氢氧化物防腐蚀涂层材料的研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 16-24.
[14] 纪开强, 李光福, 赵亮. 两种不锈钢在模拟重水堆一回路溶液和3.5%NaCl溶液中的点蚀行为[J]. 中国腐蚀与防护学报, 2021, 41(5): 653-658.
[15] 谢冬柏, 洪昊, 王文, 彭晓, 多树旺. 模拟燃烧环境介质和温度对不锈钢表面氧化物形态的影响研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 358-366.