石油管材用含Cu钢焊接接头的微生物腐蚀研究
1.
2.
3.
Microbiologically Influenced Corrosion of Cu-bearing Steel Welded Joints for Petroleum Pipes
1.
2.
3.
通讯作者: 史显波,E-mail:xbshi@imr.ac.cn,研究方向为先进钢铁结构材料的研究及应用
收稿日期: 2024-03-28 修回日期: 2024-05-27
基金资助: |
|
Corresponding authors: SHI Xianbo, E-mail:xbshi@imr.ac.cn
Received: 2024-03-28 Revised: 2024-05-27
Fund supported: |
|
作者简介 About authors
燕冰川,男,1979年生,博士,正高级工程师
利用电化学测试和短时浸泡实验研究了石油管材用含Cu钢焊接接头不同区域,包括母材(BM)、热影响区(HAZ)、焊缝(WM)的微生物腐蚀行为。生物膜微观形貌结果表明,BM区域细菌生物膜均匀致密,而WM和HAZ区域的细菌生物膜松散聚集。电化学结果表明,BM试样(Rct + Rf)电阻值随浸泡时间的延长稳定增加,而WM和HAZ试样的(Rct + Rf)电阻值出现波动现象。最终导致BM试样表面点蚀坑少且浅,而WM和HAZ试样表面的点蚀坑小而深且聚集分布。分析认为,WM和HAZ的组织不均匀性为细菌选择性附着提供了位点,由此造成的生物膜微观不均匀分布促进了不同区域组织之间的局部腐蚀是WM和HAZ耐蚀性较差的主要原因。
关键词:
Welding joints are not only weak areas of conventional corrosion, but also preferred locations for microbiologically influenced corrosion (MIC). In this article, MIC behavior of different regions of the Cu-bearing steel welded joint, including the base metal (BM), heat affected zone (HAZ), and weld metal (WM), was studied by immersion test in SRB containing solution with electrochemical measurement.Results showed that a uniform and dense bacterial biofilm was formed and covered on the BM specimen, while a loose porous one on WM and HAZ specimens. The electrochemical results indicated that the (Rct + Rf) value of BM specimen increased steadily with the prolonging immersion time, while that of WM and HAZ specimens fluctuated. As a result, a few of shallow pits were observed on the surface of BM specimen, but many small and deep pits distributed in clusters appeared on the surface of WM and HAZ specimens. Analysis suggested that the microstructure inhomogeneity of WM and HAZ specimens provides sites for bacterial selective adhesion, resulting in biofilm with microscopically heterogeneous surface morphology, which promote local corrosion. Thus, the MIC resistance of WM and HAZ specimens is lower than that of BM specimen.
Keywords:
本文引用格式
燕冰川, 曾云鹏, 张宁, 史显波, 严伟.
YAN Bingchuan, ZENG Yunpeng, ZHANG Ning, SHI Xianbo, YAN Wei.
微生物腐蚀是导致石油管材失效的一个主要原因。国内外报道了大量因微生物腐蚀导致/促进石油管材失效的案例[1]。据统计,油井管75%的腐蚀和地埋管线50%的故障均与微生物腐蚀相关[2]。为了减缓或抑制这种腐蚀,开发出了物理、化学、防护涂层、电化学、生物竞争、抗菌钢管等多种防护措施。其中,抗菌钢管是从材料自身角度发展的一种防治管线微生物腐蚀措施的新方案[3,4]。通过对材料进行适量的Cu合金化改进,利用材料中Cu的接触杀菌并抑制细菌生物膜形成,从而起到耐微生物腐蚀作用,具有较好的防护效果。例如,前期工作研究表明,在相同微生物腐蚀条件下,相比无Cu对比钢,含Cu钢的点腐蚀深度降低5倍以上[5]。于浩波等[6]开展了一种Cu含量为0.6% (质量分数)的L245NCS钢的室内浸泡实验和现场页岩气田实验,结果表明,与不含Cu的L245NCS钢相比,含Cu钢在两种实验环境中都能够有效抑制细菌的生存,发生点腐蚀的概率降低,具备良好的耐微生物腐蚀性能。
石油管材用钢管除了无缝管采用接箍连接外,焊接是其成型或连接最有效和广泛应用的方法。虽然含Cu钢有效降低了油气管线发生微生物腐蚀的倾向,但其焊接接头的微生物腐蚀行为缺少系统研究。焊接会造成焊接接头成分、组织等的不均匀,同时还容易产生气孔、夹杂、焊接裂纹等焊接缺陷和较大的残余应力,这使得焊接接头区域往往成为腐蚀过程中的薄弱环节[7]。例如,Jiang等[8]对我国西南某气田所发生的68起失效事故的统计分析表明,微生物所引发的点蚀是管道失效的主要原因,而这其中,有超过1/3发生在焊缝处。祝李洋[9]研究表明,在硫酸盐还原菌(SRB)存在环境下,X80管线钢焊缝试样的电化学反应更加剧烈。研究认为,焊缝处丰富的晶体缺陷,增加了SRB的附着,提供了更多的点蚀基点,更加利于SRB繁殖生长,加速了生物膜下点蚀的进行[9]。文献[10,11]研究表明,X80管线钢焊接接头会发生选择性SRB腐蚀。细菌更易趋向于附着在基材区,热影响区处的SRB被膜较薄,分布较均匀,而焊缝区SRB被膜呈团簇分布,在样品表面诱发分散分布的局部腐蚀坑。可见,焊接接头部位特殊的组织形式有利于细菌的吸附和更容易从其中获取电子,进而会加速腐蚀。因此,研究石油管材用含Cu钢焊接接头的微生物腐蚀性能十分必要,研究结果对于推动含Cu钢管的发展和应用具有重要现实意义。
本文以含Cu钢焊接钢板为研究对象,研究了焊接接头的组织、力学性能及耐微生物腐蚀性能,为后续含Cu钢焊接接头性能的进一步优化奠定基础。
1 实验方法
焊接实验钢板由实验室轧制获得,板厚为6 mm,钢板采用双面埋弧焊焊接。为了保证焊接接头良好的耐微生物腐蚀性能,焊丝同样采用含Cu材料。钢板及焊丝材料化学成分如表1所示。焊接实验采用“X”型坡口,焊前清理油污,不进行预热。焊接在MZ-1000型直流焊机上进行,采用双面单道次焊接,电流为450 A,电弧电压为30 V。
表1 钢板母材和焊丝的化学成分 (mass fraction / %)
Table 1
Material | C | Mn | Cu | Ni | Ti | Nb | P | S | Si | Mo | Al | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Base metal | 0.028 | 0.52 | 1.35 | 1.10 | 0.011 | 0.017 | 0.003 | 0.002 | 0.13 | - | 0.01 | Bal. |
Filler wire | 0.033 | 0.56 | 1.83 | 1.94 | - | 0.018 | - | - | - | 0.10 | - | Bal. |
从焊后钢板焊接接头上切取组织观察试样,包括母材(BM)、焊缝(WM)和热影响区(HAZ)。为了获得良好的耐微生物腐蚀性能,对切取的试样进行550 ℃/2 h的时效处理[12]。分别对时效前后的试样进行研磨、抛光,然后使用2% (体积分数)硝酸酒精溶液腐蚀,最后在Zeiss LSM700型光学显微镜下观察各部位的显微组织。
从焊后的钢板上分别切取母材和焊接接头的拉伸和冲击试样,取样位置如图1所示。同样取部分母材和焊接接头的坯料进行550 ℃/2 h的时效处理。拉伸试样规格为Φ3M6,实验参照GB/T 228.1-2010在Z050型万能试验机上进行。冲击试验采用尺寸为55 mm × 10 mm × 2.5 mm的小尺寸V型缺口试样,焊接接头冲击试样的开口位置在焊缝中心,参照GB/T 229-2020进行冲击试验,实验温度为-20 ℃。
图1
图1
焊接接头中组织和性能检测的取样位置示意图
Fig.1
Schematic diagram of sampling locations for (a) mechanical properties evaluations and (b) microstructure, MIC test in welded joints
采用浸泡和电化学实验评价焊接接头的耐微生物腐蚀性能。试样分别从BM、WM和HAZ区域切取,尺寸为Φ5 mm × 4 mm,取样位置示于图1b。利用砂纸将不同部位样品逐级打磨至800#,随后用无水乙醇清洗后烘干,电化学实验样品在背面焊接导线,并将除工作面外的部分用环氧树脂封装,样品使用前用紫外灯灭菌30 min。
实验中所用的硫酸盐还原菌(SRB)菌株分离自国家材料环境腐蚀试验站沈阳土壤中心站,采用API-RP38培养基对SRB进行富集培养[12]。富集后的菌种保存在4 ℃冰箱环境中,实验前取出菌种并在30 ℃恒温箱活化12 h。为了简化实验,所用的测试溶液为接种SRB的近中性溶液[12]。溶液配制完成后,向溶液中通入体积比为5%CO2 + 95%N2的混合气体2 h除氧,然后在121 ℃下高压灭菌20 min后储存备用。实验前在灭菌溶液中加入体积分数为5%的活化后的SRB菌种,电化学实验和浸泡实验均在30 ℃恒温水浴锅中进行,周期为14 d。其中,电化学测试在PARSTAT 2273测试系统上进行。实验过程中待开路电位稳定后进行电化学阻抗谱(EIS)测量,具体的实验参数同前期研究工作[13]。
2 实验结果
2.1 焊接接头的显微组织
图2为含Cu钢板焊接接头的宏观形貌,可见焊接接头由母材(BM)、焊缝(WZ)和热影响区(HAZ)三部分组成,未见缩孔、缩松和凝固裂纹等焊接缺陷的存在,焊接质量良好。在焊接过程中,由于焊接热循环的作用会导致焊接接头不同位置的显微组织有很大差别[14]。图3为图2相应部位的微观组织形貌。可以看到,母材为多边形铁素体组织,平均晶粒尺寸约为25 μm (图3a)。焊缝则展现出不同的组织特征:图3e为典型的铸态柱状晶组织,柱状晶晶轴垂直于熔池,且在熔池中呈“V”字形分布;而图3f中尽管仍保留一定的枝晶形貌特征,但其组织明显细化。这种组织上的差异可能是由于双面焊接过程中,前焊道受到了后焊道焊接热循环的影响,发生再结晶,导致前焊道的微观组织比后焊道更加细化[15]。对于焊接热影响区,其经历了两次焊接热循环,所以它呈现一个连续变化的梯度组织:在靠近熔合线部位,晶粒较为粗大(图3d),而远离熔合线部位由于相变重结晶,组织有所细化(图3b和c)。
图2
图2
焊接接头的宏观形貌
Fig.2
Macro-morphology of the weld joint. Marks (a-f) on the image are the corresponding locations to acquire high-magnification image
图3
图3
时效前焊接接头不同部位的显微组织形貌
Fig.3
Microstructures of on the welded joint before aging condition at the position shown in Fig.2: (a, b) BM, (c, d) HAZ, (e, f) WM
图4
图4
时效后的焊接接头不同部位的显微组织形貌
Fig.4
Microstructures of different locations on the welded joint after aging: (a, b) BM, (c, d) HAZ, (e, f) WM
2.2 焊接接头的力学性能
对母材和焊接接头时效前后的力学性能进行了研究,结果如表2所示。时效前焊接接头的平均屈服强度和抗拉强度分别是419和515 MPa,高于母材的403和491 MPa;而经过时效后,由于富Cu相的析出强化作用,母材与焊接接头的强度均大幅提高,此时二者的抗拉强度基本相同,但母材的屈服强度略高于焊接接头。从延伸率结果可以看到,无论时效与否,母材的塑性均优于焊接接头。
表2 母材和焊接接头的拉伸性能和冲击性能
Table 2
Sample | YS / MPa | UTS / MPa | EL / % | Akv / J |
---|---|---|---|---|
Base metal-as-rolled | 403 | 491 | 33.5 | 31 |
Base metal-550 oC/2 h | 542 | 633 | 27.5 | 29 |
Weld joint-as-rolled | 419 | 515 | 23.5 | 21 |
Weld joint-550 oC/2 h | 525 | 630 | 20.5 | 17 |
2.3 焊接接头的微生物腐蚀性能
2.3.1 生物膜形貌
3种试样(BM、WM和HAZ)经时效后在接菌溶液中浸泡14 d后的表面生物膜活/死形貌及其数目统计结果如图5和6所示。可以看到,3种试样表面均观察到了红色“圆点”所示的死细菌,说明无论是在BM、HAZ还是在WM试样中,Cu的添加赋予了材料良好的抗菌性能。尽管在焊缝的熔覆金属中,Cu、Ni的添加量更多(表1),但并没有表现出更优的杀菌效果。这一结论可从图6中3种试样表面细菌数目统计结果得到证实。无论是活细菌还是死细菌,3种试样表面上的数量均相差较小。尽管如此,3种试样表面的生物膜形貌却有所不同:BM试样表面的生物膜分布较为均匀,而HAZ和WM试样表面的生物膜呈团聚状,分布不均匀。一般而言,显微组织的差异会对细菌在材料表面的早期附着产生影响[11]。由于腐蚀性细菌主要是依靠得到电子获取能量[17],因此细菌优先附着在更容易发生腐蚀的组织中。焊接接头的焊缝及热影响区组织不均匀,更容易发生腐蚀。因此,图5b和c试样表面稀疏、松散分布的生物膜可能是由于细菌选择性附着从而促进试样表面发生局部腐蚀造成细菌聚集所导致[18]。
图5
图5
焊接接头不同部位在接种SRB的溶液中浸泡14 d后的CLSM图像
Fig.5
CLSM images of different areas on the weld joint immersed in SRB inoculated medium for 14 d: (a) BM, (b) WM, (c) HAZ
图6
图6
焊接接头的不同部位试样表面固着活/死细菌数量统计结果
Fig.6
Live/dead sessile cells count on the surfaces of base steel and different areas of the weld joint immersed in SRB inoculated medium for 14 d
2.3.2 EIS结果
图7
图7
母材和焊接接头的不同部位在接菌溶液中的Nyquist谱图随时间的变化
Fig.7
Nyquist plots of base steel and different areas of the weld joint in the SRB-inoculated medium: (a) BM, (b) WM, (c) HAZ
图8
式中,ω是角频率,j是虚数单位(j2 = -1),Y0和n是描述电极偏离理想反应状态的系数,在本文中分别记为Yf、nf、Ydl、ndl,与前期工作表述一致[13]。各试样的EIS拟合结果如表3所示,χ2的数值反应了拟合偏差。由于金属/液膜界面双电层和腐蚀产物/生物膜的混合膜层是影响电极反应过程的限制性因素,因此,体系腐蚀速率快慢可用拟合参数(Rct+ Rf)来表征。图9给出了3种试样的(Rct+ Rf)随时间的变化曲线。结果表明,母材的(Rct+ Rf)随着浸泡时间的延长变化较小,但仍保持持续增加的趋势。而焊缝和热影响区试样的(Rct+ Rf)呈现增大-减小-增大的波动现象,并在第7 d时达到最小值。这种电阻变化导致腐蚀速率的变化可能与生物膜在腐蚀样品表面的微观不均匀分布及细菌的活性变化有关。由图5可知,WM和HAZ试样表面的生物膜呈团簇状、稀疏松散分布,这种不致密分布会促进试样表面发生局部腐蚀。可以推测,实验前期附着的细菌数量较少,而且细菌优先附着于易腐蚀区域,造成表面生物膜初始不均匀;随着细菌的增殖,细菌更加趋向于已有群落聚集,局部腐蚀增强;伴随试样表面生物膜进一步积累、破裂和细菌的衰亡,腐蚀速率随之波动。而母材组织均匀,初期不会出现细菌的选择性附着,且随着生物膜的积累,对基体还具有一定的保护作用。因此在整个过程中,母材的(Rct+ Rf)值始终大于焊缝和热影响区,即在接种SRB的溶液中,BM的耐蚀性能优于WM和HAZ。
表3 EIS数据拟合结果
Table 3
Area | Time / d | Rs / Ω·cm2 | Yf / S·s n ·cm-2 | nf | Rf / Ω·cm2 | Ydl / S·s n ·cm-2 | ndl | Rct / Ω·cm2 | χ2 |
---|---|---|---|---|---|---|---|---|---|
BM | 1 | 339 | 5.77 × 10-4 | 0.607 | 195 | 3.61 × 10-4 | 0.924 | 3.70 × 105 | 2.97 × 10-5 |
4 | 323 | 6.55 × 10-4 | 0.629 | 147 | 2.43 × 10-4 | 0.911 | 3.85 × 105 | 5.82 × 10-4 | |
7 | 268 | 6.72 × 10-4 | 0.640 | 93.3 | 2.19 × 10-4 | 0.914 | 4.02 × 105 | 1.29 × 10-4 | |
10 | 246 | 7.23 × 10-4 | 0.632 | 73.5 | 1.97 × 10-4 | 0.916 | 4.06 × 105 | 1.03 × 10-4 | |
14 | 238 | 5.54 × 10-4 | 0.688 | 44.2 | 1.77 × 10-4 | 0.900 | 4.39 × 105 | 3.23 × 10-4 | |
WM | 1 | 320 | 3.02 × 10-4 | 0.779 | 101 | 4.26 × 10-4 | 0.897 | 2.33 × 105 | 9.16 × 10-4 |
4 | 305 | 2.85 × 10-4 | 0.813 | 66.8 | 3.23 × 10-4 | 0.877 | 3.32 × 105 | 6.94 × 10-4 | |
7 | 246 | 7.07 × 10-4 | 0.760 | 88.2 | 7.62 × 10-4 | 0.868 | 3.35 × 104 | 1.16 × 10-4 | |
10 | 231 | 2.30 × 10-4 | 0.731 | 37.7 | 2.81 × 10-4 | 0.880 | 3.14 × 105 | 3.28 × 10-4 | |
14 | 135 | 1.46 × 10-3 | 0.660 | 274 | 3.09 × 10-3 | 0.938 | 8.86 × 104 | 1.02 × 10-4 | |
HAZ | 1 | 279 | 3.40 × 10-4 | 0.760 | 87.3 | 3.85 × 10-4 | 0.866 | 3.45 × 105 | 9.38 × 10-4 |
4 | 262 | 3.79 × 10-4 | 0.755 | 88.3 | 3.92 × 10-4 | 0.870 | 3.47 × 105 | 1.92 × 10-4 | |
7 | 255 | 6.99 × 10-4 | 0.722 | 125 | 6.47 × 10-4 | 0.893 | 4.09 × 104 | 1.38 × 10-4 | |
10 | 213 | 3.00 × 10-4 | 0.792 | 46.0 | 3.23 × 10-4 | 0.878 | 2.20 × 105 | 4.98 × 10-4 | |
14 | 148 | 1.43 × 10-4 | 0.703 | 193 | 3.03 × 10-3 | 0.937 | 9.46 × 104 | 1.21 × 10-4 |
图9
图9
母材和焊接接头的不同部位在接菌溶液中的(Rct+ Rf)随时间的变化曲线
Fig.9
Time dependence of (Rct+ Rf) values of base steel and different area of the weld joint immersed in SRB inoculated medium for 14 d
2.3.3 腐蚀产物
图10为焊接接头不同部位试样在接菌溶液中浸泡14 d后的表面形貌及相应的腐蚀产物元素分析结果。从图中可以看出,BM、WM和HAZ 3种试样表面均有大量腐蚀产物生成,可观察到大量大小不一、呈现松散堆状物的“疖瘤”分布于整个试样表面(图10红色箭头所示)。腐蚀表面的高倍形貌和EDS分析结果表明(图10b,c,e,f,h,i),3种试样表面均附着有大量SRB细胞,腐蚀产物中探测到的C、S、P、O等元素主要来自于生物被膜(EPS)及富Fe腐蚀产物,探测到的高浓度的Ni、Cu等元素主要来自于基体的溶解腐蚀。仔细观察高倍腐蚀产物形貌可知,BM试样表面的生物膜较为均匀、完整,未见明显的试样原始研磨痕迹;而WM和HAZ试样表面完整的细菌形态更明显,而且可见原始试样的研磨划痕,表明二者生物膜覆盖不均匀且不致密,与图5b、c中生物膜形貌形成了较好的对应。
图10
图10
母材和焊接接头的不同部位在接菌溶液中浸泡14 d后的表面形貌及相应位置的EDS分析
Fig.10
Corrosion surface morphologies and the corresponding EDS analysis of base steel and different areas of the weld joint after exposed in SRB inoculated medium for 14 d: (a-c) BM, (d-f) WM, (g-i) HAZ. Red arrows denote the corrosion products. Yellow circles denote the EDS analysis location
2.3.4 腐蚀形貌分析
3种试样去除腐蚀产物后的表面形貌如图11a,d和g所示。可以看到,在BM表面可观察到个别孤立、大且浅的点蚀坑,而WM和HAZ表面的点蚀坑呈现团簇状分布的特征,且深度较深。利用CLSM定量分析了3种试样表面的点蚀坑大小和深度,得到了各试样的最大点蚀坑数据,结果示于图11b,c,e,f,h,i。由图可知,BM试样表面的最大点蚀坑深度仅为3.1 μm,而WM和HAZ试样表面的最大点蚀坑深度则分别达到了12.2和8.4 μm,表明BM试样比WM和HAZ试样具有更优的耐蚀性能。
图11
图11
母材和焊接接头的不同部位在接菌溶液中浸泡14 d后的表面腐蚀形貌和最大点蚀坑形貌
Fig.11
Pit morphologies of the base steel and different areas of the weld joint after exposed in SRB inoculated medium for 14 d: (a-c) BM, (d-f) WM, (g-i) HAZ
3 分析与讨论
焊接接头不同部位的生物膜形貌和腐蚀产物的表面形貌结果表明,BM试样表面的细菌在微观上附着更为均匀,而WM和HAZ试样表面的细菌附着呈现松散状态,由此导致材料表面不同的点蚀形态:BM试样表面点蚀坑孤立、尺寸大且浅;而WM和HAZ试样表面的点蚀坑聚集分布,尺寸小且深。容易理解,材料的微生物腐蚀由微生物、外部环境和材料的自身性质共同决定。对于微生物因素而言,由于3种试样均在同一种细菌溶液中,因此首先可以排除微生物差异这一因素。对于外部环境这一因素来说,由于菌群在试样表面附着的均匀完整性不同,由此出现外部环境因素差异。一般而言,微生物腐蚀过程中生物膜的存在会促进膜下材料的腐蚀,尤其生物膜内附着的厌氧型SRB更容易直接从材料基体摄取电子,从而加速点腐蚀的形成[20];而生物膜的存在同时也具有阻挡外部因素进一步腐蚀的作用。对SRB来说,均匀完整的生物膜能延缓SRB代谢产物H2S的溢出,避免造成严重的局部腐蚀[21]。从电化学和腐蚀形貌结果来看,表面生物膜最为均匀完整的BM试样的腐蚀最轻,而WM和HAZ试样表面的腐蚀较为严重。可以认为这是由于基体中富Cu相的抗菌作用有效降低了生物膜内及附着在试样表面的细菌的活性,减轻了生物膜下的点腐蚀。同时,均匀完整的腐蚀产物膜也可以作为腐蚀介质传递的阻挡层,从而对BM基体产生良好的保护作用[22]。而WM和HAZ试样表面生物膜在微观上并不完整(图10e和h),尽管材料内富Cu相在一定程度上减轻了细菌的腐蚀作用,但由SRB代谢产生的H2S并不能完全被阻挡,形成的硫化物促进了局部腐蚀的发生。
对于材料本身来说,WM与BM、HAZ的成分和组织有所不同,这是3者耐蚀性差异的重要原因。从成分上来看,熔敷金属具有更高的Cu、Ni含量,Cu、Ni含量的增加不但能提高钢的自腐蚀电位,还能促进钢的表面形成保护性锈层,可有效提高钢的耐MIC性能[23]。然而从实验结果来看,WM试样的耐蚀性仍显著低于BM,而与HAZ相当,说明熔覆金属中Cu、Ni含量的增加对WM试样耐蚀性能的提高不足以补偿组织不均匀造成的耐蚀性下降。从显微组织上看,WM、HAZ区域具有明显的组织不均匀性。WM试样由于两道次焊接的熔敷金属组织差异较大,而HAZ试样也在焊接热输入的影响下形成了具有粗-细梯度变化的晶粒尺寸形貌。这种组织的不均匀性会引起试样表面化学活性差异性的增加,促进不同区域组织之间发生局部腐蚀[24],大大降低了WM和HAZ试样的耐蚀性能。再者,焊接过程还会导致WM和HAZ试样不可避免地存在更多的位错、空位等缺陷。这些缺陷不但会降低材料的塑性和韧性,还会造成焊缝晶界处的晶格畸变能加大,活性增高,电极电位降低,增加了试样的局部腐蚀敏感性。此外,WM和HAZ试样内部存在的丰富缺陷,还能作为实验早期SRB优先附着的区域[11,25],从而诱发其发生早期腐蚀。因此,本研究中焊接接头的WM和HAZ试样的耐腐蚀性能明显低于BM试样,更容易发生腐蚀。
值得注意的是,本研究针对的是取自母材及焊接接头不同部位的独立试样,独立试样中组织差异性较小。而在实际条件下,整个焊接接头,包括母材、热影响区和熔覆金属各部位之间的成分、组织差异更大,可能更容易遭受腐蚀[26]。焊接接头是工程材料服役过程中发生失效最为频繁的部位之一。因此,在含Cu钢中,尽管Cu的添加可有效改善耐微生物腐蚀性能,但其焊接接头部位仍然是服役过程中的薄弱环节,需要特别关注。
4 结论
(1) 焊接接头处的BM组织为多边形铁素体,晶粒尺寸均匀;WM组织呈现柱状晶形貌,由于焊接前后道次原因,柱状晶组织粗细不均;HAZ区域为粗细晶连续变化的梯度组织。
(2) 对比而言,BM试样附着的细菌生物膜均匀完整,而WM和HAZ试样表面附着的细菌生物膜存在微观松散聚集;电化学结果表明,BM试样(Rct + Rf)电阻值随浸泡时间的延长稳定增加,而WM和HAZ试样的(Rct + Rf)电阻值出现波动的现象。
(3) BM试样表面点蚀坑孤立、尺寸大但点蚀坑浅;WM和HAZ试样表面的点蚀坑呈现聚集分布,尺寸小且点蚀坑深;焊接接头处的WM和HAZ试样的耐腐蚀性能低于BM试样,更容易发生腐蚀。
参考文献
Microbiologically influenced corrosion of pipeline steels
[J].
管线钢的微生物腐蚀
[J].介绍了管线钢的微生物腐蚀及其危害,分析了近年来管线钢微生物腐蚀的失效案例,总结了管线钢微生物腐蚀的研究现状及管线的微生物腐蚀防治措施。从材料自身角度阐述了耐微生物腐蚀管线钢的研究进展,在此基础上提出了耐微生物腐蚀管线钢的发展方向。
A review of microbiologically influenced corrosion of metals
[J].
金属的微生物腐蚀
[J].
Novel Cu-bearing pipeline steels: A new strategy to improve resistance to microbiologically influenced corrosion for pipeline steels
[J].Microbiologically influenced corrosion (MIC) has been an important reason leading to the damage and failure of pipeline steels, bringing a great economic loss. Development of MIC resistant pipeline steel is a new strategy to mitigate MIC from the aspect of material itself, having important scientific significance and application value. By proper Cu alloying design to the traditional pipeline steels, aiming at continuous release of Cu ions to kill the bacteria and inhibit the formation of bacterial biofilm, a creative strategy for improving the MIC resistance of pipeline steels has been proposed. This article briefly introduces the MIC of pipeline steel and its research status, and then the research progress on alloy design, microstructure, mechanical properties, hydrogen induced cracking resistance and MIC resistance of novel Cu-bearing pipeline steels are reviewed, and the research results on MIC resistance of the novel Cu-bearing pipeline steels under the laboratory conditions are stressed, and finally the future tendency on research and development of this type of novel steels is suggested.
新型含Cu管线钢—提高管线耐微生物腐蚀性能的新途径
[J].
Research and development of new pipeline steels with resistance to microbiologically influenced corrosion
[J].With increase of the pipeline failure cases caused by microbiologically influenced corrosion (MIC), it is of great engineering significance to develop new measures for MIC mitigation. The Cubearing pipeline steel is a novel strategy for MIC mitigation from the material design aspect, which has shown good MIC resistance. Based on the previous reports, this review mainly summarizes the research progresses on phase transformation kinetics, thermoplasticity, and precipitation control of nanosized Curich phase, etc., in order to help better understanding of this novel type of Cubearing MIC resistant pipeline steels, guide the future production practice, and promote the application and development of Cubearing pipeline steels.
耐微生物腐蚀管线钢新材料的研究与发展
[J].面对与日俱增的管线微生物腐蚀失效问题,发展微生物腐蚀防治新措施具有重要的工程应用意义。含铜管线钢是从材料自身设计角度发展的一种防治管线微生物腐蚀措施的新方案,已显示出良好的耐微生物腐蚀效果。在前期综述报道的基础上,主要总结了含铜管线钢的相变动力学、热塑性、纳米富Cu相的调控析出等方面的研究进展,以增进对新型耐微生物腐蚀含铜管线钢的认识和了解,并对含铜管线钢的未来实际生产具有重要指导意义,从而推进其应用与发展。
Microbial corrosion resistance of a novel Cu-bearing pipeline steel
[J].Microbiologically influenced corrosion (MIC) is becoming a serious problem for buried pipelines. Developing environmentally friendly strategies for MIC control is increasingly urgent in oil/gas pipeline industry. Copper (Cu) in steels can not only provide aging precipitation strengthening, but also kill bacterium, offering a special biofunction to steels. Based on the chemical composition of traditional X80 pipeline steel, two Cu-bearing pipeline steels (1% Cu and 2% Cu) were fabricated in this study. The microstructure, mechanical properties and antibacterial property against sulphate-reducing bacteria (SRB) and Pseudomonas aeruginosa (P. aeruginosa) were studied. It was found that the novel pipeline steel alloyed by 1%Cu exhibited acicular ferrite microstructure with nano-sized Cu-rich precipitates distribution in the matrix, resulting in better mechanical properties than the traditional X80 steel, and showed good MIC resistance as well. The pitting corrosion resistance of 1% Cu steel in as-aged condition was significantly better than that of X80 steel. A possible antibacterial mechanism of the Cu-bearing pipeline steel was proposed.
Anti microbiological corrosion performance of Cu-containing antibacterial pipeline steel
[J].
含Cu抗菌管线钢的抑制微生物腐蚀性能
[J].
Failure analysis of corrosion at an inhomogeneous welded joint in a natural gas gathering pipeline considering the combined action of multiple factors
[J].
A comparative study on the corrosion of gathering pipelines in two sections of a shale gas field
[J].
Microbiological influenced corrosion of X80 pipeline and weld microstructure
[D].
X80管线钢及其焊缝组织的微生物腐蚀
[D].
Selective corrosion of X80 pipeline steel welded joints induced by sulfate-reducing bacteria
[A].
X80管线钢焊接接头的选择性SRB腐蚀
[A].
Selected corrosion of X80 pipeline steel welded joints induced by Desulfovibrio desulfuricans
[J].
Effect of nano-sized Cu-rich phase on microbiological corrosion behavior of Cu and Ni-added steel for oil country tubular goods
[J].
Effect of copper content on the MIC resistance in pipeline steel
[J].Microbiologically induced corrosion (MIC), particularly those caused by sulfate-reducing bacteria (SRB), is considered as a destructive mechanism in buried pipeline steels, which has received considerable attention since its discovery a century ago. Research has shown that sessile cells that are attached to a metal surface embedded in biofilms with extracellular polymeric substances (EPS) are responsible for the occurrence of MIC. However, the commonly used MIC control strategy, i.e., biocides, cannot perform sterilization of sessile cells because of the protection of the biofilm. Cu-bearing pipeline steel is a newly developed steel that can be used for MIC control in buried pipes. The continuous release of cytotoxic Cu ions from the steel matrix leads to MIC resistance. However, the influence of Cu content on MIC resistance remains unclear. A lower Cu content in steel is not beneficial to its MIC resistance, whereas a higher Cu content can increase the cost and may cause “hot shortness” during thermal processing. Therefore, clarifying the influence of Cu content on the properties of Cu-bearing pipeline steel is important for the practical application of the steel. In the present study, the influence of Cu content (0, 0.7%, and 1.34%; mass fraction) on the corrosion behavior of X65 grade Cu-bearing pipeline steel was investigated through electrochemical measurements and surface analysis during 14 d immersion in sterile and SRB-inoculated NS4 solutions, respectively. Experimental results demonstrated that the antibacterial properties and corrosion resistance of the steel improved with the increase of Cu content. When Cu content was increased to 1.34%, the pitting corrosion of the steel in the SRB-inoculated medium was almost suppressed. The protective corrosion products formed in the sterile medium and antibacterial Cu ions continuously released from the steel in the SRB-inoculated medium resulted in the remarkable corrosion resistance of Cu-bearing pipeline steels.
Cu含量对管线钢耐微生物腐蚀性能的影响
[J].含Cu耐微生物腐蚀管线钢的开发和应用是解决管道微生物腐蚀难题的有效措施。本工作利用电化学测试及SEM、激光共聚焦显微镜(CLSM)等分析技术,研究了不同Cu含量(0、0.7%、1.34%,质量分数)的X65级管线钢在无菌和接种硫酸盐还原菌(SRB)的近中性模拟土壤浸出液(NS4)中的腐蚀行为,为耐微生物腐蚀管线钢的优化设计提供依据。结果表明,随着Cu含量的升高,含Cu管线钢的抗菌性能和耐蚀性能均有所提高;当Cu含量从0增加到0.70%时,试样表面的点蚀坑密度从714 cm<sup>-2</sup>下降到244 cm<sup>-2</sup>;当Cu含量达到1.34%时,点蚀坑密度进一步下降到67 cm<sup>-2</sup>;含Cu钢在腐蚀过程中持续释放的铜离子在接菌环境中的杀菌作用和其对腐蚀产物层的改善作用,以及其在无菌环境中所形成的Cu<sub>2</sub>O等保护性腐蚀产物是含Cu管线钢具有优异耐蚀性能的关键原因。
Weld structure and mechanical properties of 590 MPa high strength steel thin slab in vertical position double-sided arc welding
[J].
590 MPa级高强钢双面双弧立焊焊缝组织性能
[J].
Effects of weld thermal cycle on microstructure and properties of 1000MPa grade weld metal
[J].
焊接热循环对1000MPa级焊缝金属组织性能的影响
[J].
Effect of different welding process on microstructure and properties of P92 steel welded joint
[J].P92 steel has been used for a long time in the hightemperature components of power station, and the different welding process has an important effect on the microstructure and properties of the joint. The influence of automatic and manual welding processes on the microstructure and properties of P92 welded joints was studied, and the microstructure and mechanical properties of P92 steel welded joints under different welding processes were tested by means of scanning electron microscopy, transmission electron microscopy and mechanical property testing. The results show that the weld microstructure under different welding processes is tempered martensite microstructure, and the weld metal microstructure under automatic welding process is finer. Due to the small heat input of automatic welding, the width of the heat affected zone of P92 steel is only 10-15mm, while the massive ferrite structure can be seen in the heat affected zone of manual welding joints, and the width of the heat affected zone is 3-4mm. Compared with the manual welding process, the tensile strength of the joint welded by automatic welding is also higher, especially the impact toughness. Compared with the manual welding, the impact toughness of the weld metal of P92 automatic welding is increased by 100%, and the impact toughness of the heat affected zone is increased by 58%. Therefore, the automatic welding method can significantly improve the performance of P92 steel welded joints, and help to improve the high temperature creep resistance of joints.
不同焊接工艺对P92钢焊接接头组织性能的影响
[J].P92钢长期被用于电站机组中的高温部件,不同的焊接工艺对其接头的组织和性能有着重要的影响。研究了自动焊和手工焊焊接工艺对P92焊接接头组织和性能的影响,并采用扫描电镜,透射电镜和力学性能测试等方法对不同焊接工艺下的P92钢焊接接头的显微组织和力学性能进行检测,结果表明:不同焊接工艺下焊缝组织均为回火马氏体组织,自动焊焊接工艺下焊缝金属组织较为细小;且由于自动焊焊接热输入较小,P92钢的热影响区的宽度仅为1.0~1.5mm,而在手工焊焊接接头热影响区可见块状铁素体组织,热影响区宽度在3~4mm。与手工焊焊接工艺相比,自动焊焊接接头抗拉强度也较高,尤其是冲击韧性,P92自动焊焊接接头的焊缝金属的冲击韧性相比手工焊提高了100%,热影响区冲击韧性提高了58%。因此采用自动焊焊接方法可显著提高P92钢焊接接头性能,并有助于提高接头的高温抗蠕变性能。
Research progress on sulfate-reducing bacteria induced corrosion of steels
[J].
硫酸盐还原菌对钢材腐蚀行为的研究进展
[J].
Research progress of metal corrosion caused by extracellular polymeric substances of microorganisms
[J].
微生物胞外聚合物引起的金属腐蚀的研究进展
[J].
Corrosion behavior of X65 steel in seawater containing sulfate reducing bacteria under aerobic conditions
[J].The corrosion behavior of X65 steel was investigated in the seawater inoculated with sulfate reducing bacteria (SRB) under the aerobic environment by electrochemical impedance techniques and immersion tests. The corroded morphologies and the composition of the corrosion products were investigated. The variation of the solution parameters including the bacterium number, the pH value and the soluble iron concentration were also investigated. The results indicated that in the SRB-containing system, the impedance responses presented a depressed semi-circle in the initial period, which then turned into the blocked electrode characteristic during the later immersion. The biofilm, mainly composed of extracellular polymeric substances, Fe(OH), γ-FeOOH and α-FeO, formed and degraded with the SRB growth. The soluble iron concentration initially increased, then rapidly decreased and later slowly increased. In the SRB-containing seawater under the aerobic environment, the X65 steel was corroded in the initial immersion. The corrosion became inhibited with the forming of the biofilm during the subsequent immersion. The inhibition efficiency rapidly increased in the logarithmic phase, remained stable in the stationary phase and then decreased in the declination phase. In the corrosion process, the biofilm metabolized by SRB played a key role in the corrosion inhibition of X65 steel.Copyright © 2018 Elsevier B.V. All rights reserved.
Toward a better understanding of microbiologically influenced corrosion caused by sulfate reducing bacteria
[J].Sulfate reducing bacteria (SRB) are often the culprits of microbiologically influenced corrosion (MIC) in anoxic environments because sulfate is a ubiquitous oxidant. MIC of carbon steel caused by SRB is the most intensively investigated topic in MIC because of its practical importance. It is also because biogenic sulfides complicate mechanistic SRB MIC studies, making SRB MIC of carbon steel is a long-lasting topic that has generated considerable confusions. It is expedient to think that biogenic H2S secreted by SRB acidifies the broth because it is an acid gas. However, this is not true because endogenous H2S gets its H+ from organic carbon oxidation and the fluid itself in the first place rather than an external source. Many people believe that biogenic H2S is responsible for SRB MIC of carbon steel. However, in recent years, well designed mechanistic studies provided evidence that contradicts this misconception. Experimental data have shown that cathodic electron harvest by an SRB biofilm from elemental iron via extracellular electron transfer (EET) for energy production by SRB is the primary cause. It has been demonstrated that when a mature SRB biofilm is subjected to carbon source starvation, it switches to elemental iron as an electron source and becomes more corrosive. It is anticipated that manipulations of EET related genes will provide genetic-level evidence to support the biocathode theory in the future. This kind of new advances will likely lead to new gene probes or transcriptomics tools for detecting corrosive SRB strains that possess high EET capabilities.
A study of microbiologically induced corrosion by sulfate-reducing bacteria on carbon steel using hydrogen permeation
[J].
Beating the bugs: roles of microbial biofilms in corrosion
[J].
Modification of rust layer on carbon steel with reactive actions of metallic cations for improved corrosion protectiveness
[J].
In situ corrosion characterization of simulated weld heat affected zone on API X80 pipeline steel
[J].
The effect of microstructure on microbiologically influenced corrosion
[J].
Galvanic corrosion of a welded joint in 3Cr low alloy pipeline steel
[J].
/
〈 |
|
〉 |
