Please wait a minute...
中国腐蚀与防护学报  2015, Vol. 35 Issue (4): 372-378    DOI: 10.11902/1005.4537.2014.128
  本期目录 | 过刊浏览 |
应变对混凝土孔隙液中不锈钢钝化性能影响的电化学研究
冯兴国1,卢向雨2,左禹3,陈达1()
2. 江苏科技大学材料科学与工程学院 镇江 212003
3. 北京化工大学材料科学与工程学院 北京 100029
Effect of Strain on Passivation of Stainless Steel in a Simulated Concrete Pore Solution
Xingguo FENG1,Xiangyu LU2,Yu ZUO3,Da CHEN1()
1. Key Laboratory of Coastal Disaster and Defence, Ministry of Education, Hohai University, Nanjing 210098, China
2. School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
3. School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
全文: PDF(968 KB)   HTML
摘要: 

通过开路电位、电化学阻抗、Mott-Schottk等电化学方法研究了不同形变量的不锈钢在模拟混凝土孔隙液中的钝化性能。结果表明,随着形变量的增加,不锈钢的开路电位和阻抗值都逐渐降低,其钝化膜中氧空位浓度明显升高。随着形变量的增加,不锈钢的钝化性能有所降低。不同形变量的不锈钢的钝化性能之间的差异不会随着其在孔隙液中浸泡时间的延长而减小。

关键词 不锈钢混凝土孔隙液钝化Mott-Schottky    
Abstract

Passivation behavior of a deformed stainless steel in a simulated concrete pore solution was studied by means of open circuit potential (OCP), electrochemical impedance spectroscopy (EIS), and Mott-Schottky plots. The results show that with the increasing strain, the OCP and impedance of the steel decreased, whereas the concentration of oxygen vacancy in passive films increased. This result suggests that the passivation of the stainless steel is degraded by the increasing strain. In addition, the difference in passivation between the deformed samples would not be diminished with the increasing immersion time.

Key wordsstainless steel    concrete pore solution    passivity    Mott-Schottky
    
基金资助:国家自然科学基金项目 (51301060),高等学校学科创新引智计划项目 (B12032),水利部公益性行业科研专项经费项目(201301052) 和中央高校基本科研业务费专项项目 (2013B03514) 资助

引用本文:

冯兴国,卢向雨,左禹,陈达. 应变对混凝土孔隙液中不锈钢钝化性能影响的电化学研究[J]. 中国腐蚀与防护学报, 2015, 35(4): 372-378.
Xingguo FENG, Xiangyu LU, Yu ZUO, Da CHEN. Effect of Strain on Passivation of Stainless Steel in a Simulated Concrete Pore Solution. Journal of Chinese Society for Corrosion and protection, 2015, 35(4): 372-378.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2014.128      或      https://www.jcscp.org/CN/Y2015/V35/I4/372

图1  不锈钢试样的尺寸
图2  不同形变量下不锈钢试样在混凝土孔隙液中的开路电位
图3  不同形变量试样在孔隙液中浸泡不同时间的Nyquist图
图4  不同形变量试样在孔隙液中浸泡不同时间的Bode图
图5  拟合所用的等效电路
Deformation magnitude Time h Rs Ωcm2 C 10-7 Fcm-2 Rad Ωcm2 Q-Y0 (10-4 Ssncm-2) Q-n Q-Cd=Y 0(ωmax)n-1 10-4 Fcm-2 Rd 105 Ωcm2
Blank 1 3.342 1.363 10.48 1.363 0.861 3.140 1.719
8 4.621 1.187 12.01 1.137 0.884 2.285 3.142
24 4.364 0.987 14.35 1.073 0.889 2.088 7.674
48 5.324 0.922 15.96 0.991 0.898 1.823 23.970
0.6% 1 5.066 3.439 9.43 3.389 0.855 8.084 0.289
8 4.786 2.732 11.32 3.432 0.868 7.587 1.327
24 4.749 1.198 12.76 3.229 0.878 6.723 4.117
48 5.416 1.132 14.98 2.844 0.890 5.514 9.724
2.7% 1 5.569 8.887 10.69 4.338 0.855 10.323 0.306
8 4.577 6.612 11.46 4.361 0.886 8.640 0.781
24 4.546 1.807 12.76 4.036 0.864 9.100 1.839
48 4.434 1.235 13.95 4.197 0.872 9.053 7.031
表1  不同形变量的不锈钢在孔隙液中等效电路各元件拟合值
图6  形变量对模拟孔隙液中不锈钢钢筋极化电阻和双电层电容的影响
图7  不同形变量不锈钢试样在孔隙液中浸泡2 h后的Mott-Schottky曲线
图8  形变量对不锈钢钝化膜中空位浓度的影响
图9  形变量对不锈钢双电层厚度的影响
[1] Zhang W P, Shang D F, Gu X L. Stress-strain relationship of corroded steel bars[J]. J. Tongji Univ.(Nat. Sci.), 2006, 34(5): 586 (张伟平, 商登峰, 顾祥林. 锈蚀钢筋应力-应变关系研究[J]. 同济大学学报 (自然科学版), 2006, 34(5): 586)
[2] Yuan Y S, Jia F P, Cai Y. Deterioration of mechanical behavior of corroded steel bar[J]. Ind. Constr., 2000, 30(1): 43 (袁迎曙, 贾福萍, 蔡跃. 锈蚀钢筋的力学性能退化研究[J]. 工业建筑, 2000, 30(1): 43)
[3] Jaffer S J, Hansson C M. Chloride-induced corrosion products of steel in cracked-concrete subjected to different loading conditions[J]. Cem. Concr. Res., 2009, 39(2): 116
[4] Castro B P, de-Rincón O T, Moreno E I, et al. Performance of a 60-year-old concrete pier with stainless steel reinforcement[J]. Mater. Perform., 2002, 41(10): 50
[5] Veleva L, Alpuche-Aviles M A, Graves-Brook M K, et al. Voltammetry and surface analysis of AISI 316 stainless steel in chloride-containing simulated concrete pore environment[J]. J. Electroanal. Chem., 2005, 578(1): 45
[6] Knudsen A, Jensen F M, Klinghoffer O, et al. Cost-effective enhancement of durability of concrete structures by intelligent use of stainless steel reinforcemen [A]. Conference on Corrosion and Rehabilitation of Reinforced Concrete Structures [C]. Florida: 1998
[7] Valiente A. Stress corrosion failure of large diameter pressure pipelines of prestressed concrete [J]. Eng. Fail. Anal.., 2001, 8(3): 245
[8] Anhvu N, Castel A, Francois R. Effect of stress corrosion cracking on stress-strain response of steel wires used in prestressed concrete beams[J]. Corros. Sci., 2009, 51(6): 1453
[9] Gong J X, Wang H C, Li J B. Effect of loading on corrosion of reinforced concrete beam exposed in corroded environment[J]. J. Sout- heast Univ.(Nat. Sci.), 2005, 35(3): 421 (贡金鑫, 王海超, 李金波. 腐蚀环境中荷载作用对钢筋混凝土梁腐蚀的影响[J]. 东南大学学报 (自然科学版), 2005, 35(3): 421)
[10] Díaz B, Freire L, Nóvoa X R, et al. Electrochemical behaviour of high strength steel wires in the presence of chlorides[J]. Electrochim. Acta, 2009, 54(22): 5190
[11] Gadadhar S, Balasubramaniam R. On the corrosion behaviour of phosphoric irons in simulated concrete pore solution[J]. Corros. Sci., 2008, 50(1): 131
[12] Xiang Q W, Cao S, Sun D M, et al. Charavterization and cathode electrophoresis deposition of cerium modified films on Al 5083[J]. Acta Metall. Sin., 2010, 46(3): 352 (项秋伟, 曹思, 孙道明等. Al 5083表面电泳沉积稀土改性膜制备和表征[J]. 金属学报, 2010, 46(3): 352)
[13] Hsu C H, Mansfeld F. Technical note: Concerning the conversion of the constant phase element parameter Y-0 into a capacitance[J]. Corrosion, 2001, 57(9): 747
[14] Teofilo R F, Ceragioli H J, Peterlevitz A C, et al. Improvement of the electrochemical properties of "as-grown" boron-doped polycrystalline diamond electrodes deposited on tungsten wires using ethanol[J]. J. Solid State Electrochem., 2007, 11(10): 1449
[15] Wu Q, Liu Y, Du R G, et al. Electrochemical study on the effect of chloride ions on the passivity of reinforcing steel in simulated concrete pore solutions[J]. Acta Metall. Sin., 2008, 44(3): 346 (吴群, 刘玉, 杜荣归等. 氯离子对模拟混凝土孔溶液中钢筋钝性影响的电化学研究[J]. 金属学报, 2008, 44(3): 346)
[16] Li D G, Feng Y R, Bai Z Q, et al. Influence of temperature, chloride ions and chromium element on the electronic property of passive film formed on carbon steel in bicarbonate/carbonate buffer solution[J]. Electrochim. Acta, 2007, 52(28): 7877
[17] Dong Z H, Shi W, Zhang G A, et al. The role of inhibitors on the repassivation of pitting corrosion of carbon steel in synthetic carbonated concrete pore solution[J]. Electrochim. Acta, 2011, 56(17): 5890
[18] Carmezim M J, Simoes A M, Montemor M F, et al. Capacitance behaviour of passive films on ferritic and austenitic stainless steel[J]. Corros. Sci., 2005, 47(3): 581
[19] Vignal V, Oltra R, Verneaub M, et al. Influence of an elastic stress on the conductivity of passive films[J]. Mater. Sci. Eng., 2001, A303(1/2): 173
[20] Lv J L, Luo H Y. Influence of tensile pre-strain and sensitization on passive films in AISI 304 austenitic stainless steel[J]. Mater. Chem. Phys., 2012, 135(2/3): 973
[21] Gaben F, Vuillemin B, Oltra R. Influence of the chemical composition and electronic structure of passive films grown on 316L SS on their transient electrochemical behavior[J]. J. Electrochem. Soc., 2004, 151(11): B595
[22] Okamoto G. Passive film of 18-8 stainless steel structure and its function[J]. Corros. Sci., 1973, 13(6): 471
[23] James E W, Clark D. Review of the capabilities and properties of electroless plated thin film media for rigid memory disks[J]. J. Electrochem. Soc., 1990, 137(10): 3260
[24] Chao C Y, Lin L F, MacDonald D D. A point defect model for anodic passive films I. film growth kinetics[J]. J. Electrochem. Soc., 1981, 128(6): 1187
[25] MacDonald D D. The point defect model for the passive state[J]. J. Electrochem. Soc., 1992, 139(12): 3434
[26] MacDonald D D. Passivity-the key to our metals-based civilization[J]. Pure Appl. Chem., 1999, 71(6): 951
[1] 刘欣怡, 赵亚州, 张欢, 陈莉. 混凝土孔隙液中Cl-浓度对304不锈钢亚稳态点蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 195-201.
[2] 张慧云, 郑留伟, 孟宪明, 梁伟. 电化学充氢对Cr15铁素体不锈钢和304奥氏体不锈钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 202-208.
[3] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[4] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[5] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[6] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[7] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[8] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[9] 赵柏杰, 范益, 李镇镇, 张博威, 程学群. 不同类型接触面对316L不锈钢缝隙腐蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[10] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[11] 秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[12] 何壮,王兴平,刘子涵,盛耀权,米梦芯,陈琳,张岩,李宇春. 316L和HR-2不锈钢在盐酸液膜环境中的钝化与点蚀[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[13] 武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[14] 张瑞,李雨,关蕾,王冠,王福雨. 热处理对激光选区熔化Ti6Al4V合金电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[15] 骆鸿,高书君,肖葵,董超芳,李晓刚. 磁控溅射工艺对CrN薄膜及其腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(5): 423-430.