Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (6): 1009-1015          DOI: 10.11902/1005.4537.2021.312
  研究报告 本期目录 | 过刊浏览 |
改性玄武岩/环氧涂层化学键合界面对涂层防腐性能的影响
曹京宜1, 臧勃林1, 曹宝学1, 李亮1, 方志刚1, 郑宏鹏2, 刘莉2(), 王福会2
1.中国人民解放军92228部队 北京 100072
2.沈阳材料科学国家研究中心 东北大学联合研究分部 沈阳 110819
Influence of Chemical Bonding Interface of Modified Basalt/epoxy Coating on Its Corrosion Resistance
CAO Jingyi1, ZANG Bolin1, CAO Baoxue1, LI Liang1, FANG Zhigang1, ZHENG Hongpeng2, LIU Li2(), WANG Fuhui2
1. Unit 92228, People's Liberation Army, Beijing 100072, China
2. Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
引用本文:

曹京宜, 臧勃林, 曹宝学, 李亮, 方志刚, 郑宏鹏, 刘莉, 王福会. 改性玄武岩/环氧涂层化学键合界面对涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(6): 1009-1015.
Jingyi CAO, Bolin ZANG, Baoxue CAO, Liang LI, Zhigang FANG, Hongpeng ZHENG, Li LIU, Fuhui WANG. Influence of Chemical Bonding Interface of Modified Basalt/epoxy Coating on Its Corrosion Resistance[J]. Journal of Chinese Society for Corrosion and protection, 2022, 42(6): 1009-1015.

全文: PDF(7613 KB)   HTML
摘要: 

利用硅烷偶联剂KH550对玄武岩鳞片表面进行化学改性,制备了改性玄武岩。通过红外光谱、扫描电子显微镜等技术对改性玄武岩鳞片进行表征;采用沉降实验、涂层横截面微观形貌观察分析了改性玄武岩鳞片在环氧树脂中的分散性和相容性;利用附着力测试和电化学阻抗谱技术,研究了改性玄武岩鳞片/环氧树脂复合涂层的附着性能和防腐性能。结果表明:KH550通过化学键合附着在玄武岩鳞片表面上,使玄武岩鳞片与环氧涂层形成化学键合界面,从而提高了玄武岩鳞片与环氧树脂的相容性,增强了涂层的屏蔽性能和附着力,进而提升了涂层的防腐性能。

关键词 硅烷偶联剂改性玄武岩环氧树脂化学键合    
Abstract

Due to the surface smoothness and chemical inertia of basalt flakes, the interfacial bond strength of basalt flake/epoxy resin is poor. In this paper, the basalt flakes were chemically modified by silane coupling agent (KH550) to prepare the modified basalt (MB) flakes. The bare and modified basalt flakes were characterized by FT-IR and SEM/EDS. The dispersibility and compatibility of MB flakes in epoxy resin were examined by sedimentation test and cross-sectional microstructure observation of the prepared flakes/epoxy coating. The adhesion and anti-corrosion properties of MB flakes/epoxy coating were investigated using adhesion test and EIS technology, respectively. The results show that the chemical modification makes the surface of basalt flakes being chemically bonded with KH550, and which is beneficial to the formation the chemical bond interface of MB flakes/epoxy coating, leading to improve the compatibility of MB flakes with epoxy resin, therewith increase the barrier performance and adhesion of the coating, as a result, enhance the anti-corrosion performance of the modified epoxy coating.

Key wordssilane coupling agent    modified basalt    epoxy resin    chemical bonded
收稿日期: 2021-11-03     
ZTFLH:  TG174.46  
基金资助:国家重点研发计划(2019YFC0312100)
作者简介: 曹京宜,女,1972年生,研究员
图1  KH550,Basalt和MB的FT-IR图谱
图2  改性玄武岩鳞片的SEM图像和EDS图像
图3  B/EP和MB/EP复合涂层不同浸泡时间后的附着力
图4  不同浸泡时间下涂层/金属体系的等效电路图
图5  两种涂层不同浸泡时间后的EIS测试结果
图6  B/EP和MB/EP两种涂层的Cc,Rc和Rt随浸泡时间的变化曲线
图7  Basalt和MB鳞片在环氧树脂中静置的宏观照片
图8  两种涂层浸泡1000 h后的微观形貌
[1] Khan A, Ubaid F, Fayyad E M, et al. Synthesis and properties of polyelectrolyte multilayered microcapsules reinforced smart coatings [J]. J. Mater. Sci., 2019, 54: 12079
doi: 10.1007/s10853-019-03761-9
[2] Liu S Y, Liu L, Meng F D, et al. Protective performance of polyaniline-sulfosalicylic acid/epoxy coating for 5083 aluminum [J]. Materials, 2018, 11: 292
doi: 10.3390/ma11020292
[3] Funke W. Problems and progress in organic coatings science and technology [J]. Prog. Org. Coat., 1997, 31: 5
doi: 10.1016/S0300-9440(97)00013-1
[4] Cao J Y, Wang Z Q, Li L, et al. Failure mechanism of organic coating with modified graphene under simulated deep-sea alternating hydrostatic pressure [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 139
[4] (曹京宜, 王智峤, 李亮 等. 深海压力交变加速条件下改性石墨烯有机涂层的失效机制 [J]. 中国腐蚀与防护学报, 2020, 40: 139)
[5] Alhumade H, Nogueira R P, Yu A, et al. Role of surface functionalization on corrosion resistance and thermal stability of epoxy/glass flake composite coating on cold rolled steel [J]. Prog. Org. Coat., 2018, 122: 180
[6] Barbhuiya S, Choudhury M I. Nanoscale characterization of glass flake filled vinyl ester anti-corrosion coatings [J]. Coatings, 2017, 7: 116
doi: 10.3390/coatings7080116
[7] Sathiyanarayanan S, Azim S S, Venkatachari G. Corrosion protection coating containing polyaniline glass flake composite for steel [J]. Electrochim. Acta, 2008, 53: 2087
doi: 10.1016/j.electacta.2007.09.015
[8] Luan H, Meng F D, Liu L, et al. Preparation and anticorrosion performance of m-phenylenediamine-graphene oxide/organic coating [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 161
[8] (栾浩, 孟凡帝, 刘莉 等. 间苯二胺-氧化石墨烯/有机涂层的制备及防腐性能研究 [J]. 中国腐蚀与防护学报, 2021, 41: 161)
[9] Zhai L L, Ling G P. The adhesion between polymer coating and metal and its research progress [J]. Mater. Rev., 2005, 19(7): 79
[9] (翟兰兰, 凌国平. 高分子涂层与金属的附着力及其研究进展 [J]. 材料导论, 2005, 19(7): 79)
[10] Yamabe H. Stabilization of the polymer-metal interface [J]. Prog. Org. Coat., 1996, 28: 9
doi: 10.1016/0300-9440(95)00587-0
[11] Ghaffari M, Ehsani M, Khonakdar H A. Morphology, rheological and protective properties of epoxy/nano-glassflake systems [J]. Prog. Org. Coat., 2014, 77: 124
[12] Miszczyk A, Szalinska H. Laboratory evaluation of epoxy coatings with an adhesion promoter by impedance [J]. Prog. Org. Coat., 1995, 25: 357
doi: 10.1016/0300-9440(95)00550-X
[13] Han H L, Li H Q, Liu M Y, et al. Effect of “bridge” on the performance of organic-inorganic crosslinked hybrid proton exchange membranes via KH550 [J]. J. Power Sources, 2017, 340: 126
doi: 10.1016/j.jpowsour.2016.11.066
[14] Yu Y, Zhang Y X, Chen Y, et al. Kinetics of anorthite dissolution in basaltic melt [J]. Geochim. Cosmochim. Acta, 2016, 179: 257
doi: 10.1016/j.gca.2016.02.002
[15] Wang S, Chia P J, Chua L L, et al. Band-like transport in surface-functionalized highly solution-processable graphene nanosheets [J]. Adv. Mater., 2008, 20: 3440
doi: 10.1002/adma.200800279
[16] Yu C H, Al-Saadi A, Shih S J, et al. Immobilization of BSA on silica-coated magnetic iron oxide nanoparticle [J]. J. Phys. Chem. C, 2009, 113: 537
doi: 10.1021/jp809662a
[17] Yu C H, Caiulo N, Lo C C H, et al. Synthesis and fabrication of a thin film containing silica-encapsulated face-centered tetragonal FePt nanoparticles [J]. Adv. Mater., 2006, 18: 2312
doi: 10.1002/adma.200600802
[18] Di H H, Yu Z X, Ma Y, et al. Corrosion-resistant hybrid coatings based on graphene oxide-zirconia dioxide/epoxy system [J]. J. Taiwan Inst. Chem. Eng., 2016, 67: 511
doi: 10.1016/j.jtice.2016.08.008
[19] Araujo W S, Margarit I C P, Ferreira M, et al. Undoped polyaniline anticorrosive properties [J]. Electrochim. Acta, 2001, 46: 1307
doi: 10.1016/S0013-4686(00)00726-X
[20] Kavitha C, Narayanan T S N S, Ravichandran K, et al. Deposition of zinc-zinc phosphate composite coatings on aluminium by cathodic electrochemical treatment [J]. Surf. Coat. Technol., 2014, 258: 539
doi: 10.1016/j.surfcoat.2014.08.040
[21] Martí M, Fabregat G, Azambuja D S, et al. Evaluation of an environmentally friendly anticorrosive pigment for alkyd primer [J]. Prog. Org. Coat., 2012, 73: 321
doi: 10.1016/j.porgcoat.2011.10.017
[22] Alibakhshi E, Ghasemi E, Mahdavian M, et al. Active corrosion protection of Mg-Al-PO43- LDH nanoparticle in silane primer coated with epoxy on mild steel [J]. J. Taiwan Inst. Chem. Eng., 2017, 75: 248
doi: 10.1016/j.jtice.2017.03.010
[23] Alibakhshi E, Ghasemi E, Mahdavian M, et al. A comparative study on corrosion inhibitive effect of nitrate and phosphate intercalated Zn-Al-layered double hydroxides (LDHs) nanocontainers incorporated into a hybrid silane layer and their effect on cathodic delamination of epoxy topcoat [J]. Corros. Sci., 2017, 115: 159
doi: 10.1016/j.corsci.2016.12.001
[24] Liu C, Bi Q, Leyland A, et al. An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part I. Establishment of equivalent circuits for EIS data modelling [J]. Corros. Sci., 2003, 45: 1243
doi: 10.1016/S0010-938X(02)00213-5
[25] Zhang Y J, Shao Y W, Zhang T, et al. The effect of epoxy coating containing emeraldine base and hydrofluoric acid doped polyaniline on the corrosion protection of AZ91D magnesium alloy [J]. Corros. Sci., 2011, 53: 3747
doi: 10.1016/j.corsci.2011.07.021
[1] 曹京宜, 李敬, 殷文昌, 孟凡帝, 刘莉. 组胺改性环氧树脂及其对有机涂层性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 151-158.
[2] 轩星雨, 屈少鹏, 赵行娅. CeO2@MWCNTs/EP复合涂层的制备与性能研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 992-1002.
[3] 邹文杰, 丁立, 张雪姣, 陈均. 环氧树脂/有机硅氧烷改性阳离子丙烯酸乳液复合涂层的研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 922-928.
[4] 于芳, 王翔, 张昭. 纳米填料在环氧防腐涂层中的应用研究进展[J]. 中国腐蚀与防护学报, 2023, 43(2): 220-230.
[5] 戈成岳, 罗祥平, 王静, 段继周, 王宁, 侯保荣. 硅烷偶联剂 (KH550) 和羟基硅油共同改性环氧树脂及配制富镁底漆性能研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 590-596.
[6] 孙伟松, 于思荣, 高嵩, 姚新宽, 徐海亮, 钱冰, 王冰姿. 水分子在石墨烯增强环氧树脂防腐涂层扩散的分子动力学模拟[J]. 中国腐蚀与防护学报, 2021, 41(3): 411-416.
[7] 付海波, 刘晓茹, 孙媛, 曹大力. 环氧树脂/重结晶碳化硅复合材料的抗腐蚀性能[J]. 中国腐蚀与防护学报, 2020, 40(4): 373-380.
[8] 师超,邵亚薇,熊义,刘光明,俞跃龙,杨志广,许传钦. 硅烷偶联剂改性磷酸锌对环氧涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[9] 左银泽, 陈亮, 冯清, 高延敏. PFOA/硅烷偶联剂分子自组装膜对环氧带锈涂层性能影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 554-560.
[10] 崔学军,代鑫,郑冰玉,张颖君. KH-550对AZ31B镁合金表面微弧氧化膜结构及性能的影响[J]. 中国腐蚀与防护学报, 2017, 37(3): 227-232.
[11] 张娟,刘自强,冯涛,温世峰,陈瑞卿. 碳纳米管含量对环氧树脂涂层性能的影响研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 254-260.
[12] 崔明君,任思明,张广安,刘栓,赵海超,王立平,薛群基. 六方氮化硼掺杂水性环氧树脂耐腐蚀性能的研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 566-572.
[13] 林海强, 柴柯, 吴进怡, 杨鹏鹏, 宋春蕾. 含碳纤维环氧树脂涂料在高压脉冲电场作用下的杀菌性能研究[J]. 中国腐蚀与防护学报, 2015, 35(5): 438-446.
[14] 蔡宗平 吕东生 李伟善 梁英. 硅烷偶联剂在镁电极固封中的作用[J]. 中国腐蚀与防护学报, 2009, 29(3): 199-204.
[15] 陈中华 唐英 余飞. 一种环保水性抗静电防腐蚀涂料的性能研究[J]. 中国腐蚀与防护学报, 2009, 29(2): 113-118.