|
|
垃圾焚烧锅炉关键受热面腐蚀研究进展及方向思考 |
蒋旭光( ), 刘晓博 |
浙江大学 能源清洁利用国家重点实验室 热能工程研究所 杭州 310027 |
|
Research Progress and Direction Thinking on Corrosion of Key Heat Transfer Components in Waste Incineration Boilers |
JIANG Xuguang( ), LIU Xiaobo |
State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China |
[1] |
National Bureau of Statistics of the People's Republic of China. China Statistical Yearbook-2017 [M]. Beijing: China Statistics Press, 2017
|
[1] |
(中华人民共和国国家统计局. 中国统计年鉴2017 [M]. 北京: 中国统计出版社, 2017)
|
[2] |
Fu L Q. Causes of corrosion and preventive measures of the heating surface of boilers in domestic waste incineration plant [J]. Metall. Collect., 2017, (5): 9
|
[2] |
(傅玲琼. 生活垃圾焚烧厂锅炉受热面腐蚀原因及预防措施 [J]. 工程技术研究, 2017, (5): 9)
|
[3] |
Wu F. Characteristics of chlorine corrosion at high temperature [J]. Power Syst. Eng., 2003, 19(1): 13
|
[3] |
(吴峰. 高温氯腐蚀的特点 [J]. 电站系统工程, 2003, 19(1): 13)
|
[4] |
Grabke E J, Reese E, Spiegel M. The effects of chlorides, Hydrogen chloride, and Sulfur dioxide in the oxidation of steels below deposits [J]. Corros. Sci., 1995, 37: 1023
doi: 10.1016/0010-938X(95)00011-8
|
[5] |
Zahs A, Spiegel M, Grabke H J. Chloridation and oxidation of iron, chromium, nickel and their alloys in chloridizing and oxidizing atmospheres at 400-700 ℃ [J]. Corros. Sci., 2000, 42: 1093
|
[6] |
Ma H T. High temperature corrosion of metallic materials induced by chloride salts [D]. Dalian: Dalian University of Technology, 2003
|
[6] |
马海涛. 高温氯盐环境中金属材料的腐蚀 [D]. 大连: 大连理工大学, 2003)
|
[7] |
Li Y S, Niu Y, Spiegel M. High temperature interaction of Al/Si-modified Fe-Cr alloys with KCl [J]. Corros. Sci., 2007, 49: 1799
|
[8] |
Kawahara Y. Controlling factors of localized corrosion in boiler combustion gas environments [J]. Oxid. Met., 2016, 85: 127
|
[9] |
Xu H L, Yang J Y. Cause analysis and countermeasures for corrosion of superheater in waste incineration boiler [J]. Energy Environ., 2018, (1): 30
|
[9] |
(徐火力, 杨家燚. 垃圾焚烧锅炉过热器腐蚀原因分析及对策 [J]. 能源与环境, 2018, (1): 30)
|
[10] |
Li Y S, Niu Y, Liu G, et al. High temperature corrosion of metallic materials in waste incineration environment [J]. Corros. Sci. Prot. Technol., 2000, 12: 224
|
[10] |
(李远士, 牛焱, 刘刚等. 金属材料在垃圾焚烧环境中的高温腐蚀 [J]. 腐蚀科学与防护技术, 2000, 12: 224)
|
[11] |
Zhang N. Experimental study on high temperature corrosion of heat exchangers in waste to energy plant [D]. Tianjin: Tianjin University, 2016
|
[11] |
张楠. 垃圾焚烧炉换热器高温腐蚀实验研究 [D]. 天津: 天津大学, 2016)
|
[12] |
Ruh A, Spiegel M. Thermodynamic and kinetic consideration on the corrosion of Fe, Ni and Cr beneath a molten KCl-ZnCl2 mixture [J]. Corros. Sci., 2006, 48: 6795
|
[13] |
Ishitsuka T, Nose K. Stability of protective oxide films in waste incineration environment-Solubility measurement of oxides in molten chlorides [J]. Corros. Sci., 2002, 44: 247
|
[14] |
Zhu J Z, Chen L Q, Gan K. Corrosion mechanism of alkali chloride during the incineration of refuse [J]. J. South China Univ. Technol. (Nat. Sci. Ed.), 2005, 33(3): 78
|
[14] |
(祝建中, 陈烈强, 甘轲. 垃圾焚烧气氛中碱金属氯化物的腐蚀机理 [J]. 华南理工大学学报: 自然科学版, 2005, 33(3): 78)
|
[15] |
Hou P Y, Prüßner K, Fairbrother D H, et al. Sulfur segregation to deposited Al2O3 film/alloy interface at 1000 ℃ [J]. Scr. Mater., 1998, 40: 241
|
[16] |
Gong B X. Influence on superheater high-temperature corrosion by flue gas components in incinerators and preventive measures [J]. Thermal Power Generat., 1995, (6): 54
|
[16] |
(龚佰勋. 垃圾焚烧炉烟气成分对过热器高温腐蚀的影响及其防止方法初探 [J]. 热力发电, 1995, (6): 54)
|
[17] |
Ma X Q. High temperature corrosion and countermeasure of S, Cl and its chemical compound on refuse incineration boiler [J]. Power Syst. Eng., 1997, 13(5): 39
|
[17] |
(马晓茜. 硫和氯及其化合物对垃圾焚烧炉的高温腐蚀与对策 [J]. 电站系统工程, 1997, 13(5): 39)
|
[18] |
Pan T J, Zeng C L, Niu Y. Corrosion of three commercial steels under ZnCl2-KCl deposits in a reducing atmosphere containing HCl and H2S at 400-500 ℃ [J]. Oxid. Met., 2007, 67: 107
doi: 10.1007/s11085-006-9047-5
|
[19] |
Fu G Y, Lin L H, Liu Q, et al. Hot corrosion behavior of Fe-Cr alloys with Na2SO4 coating [J]. J. Shenyang Univ. Chem. Technol., 2014, 28: 69
|
[19] |
(付广艳, 林立海, 刘群等. Fe-Cr合金在Na2SO4盐膜下的热腐蚀行为 [J]. 沈阳化工大学学报, 2014, 28: 69)
|
[20] |
Paneru M, Stein-Brzozowska G, Maier J, et al. Corrosion mechanism of alloy 310 austenitic steel beneath NaCl deposit under varying SO2 concentrations in an Oxy-fuel combustion atmosphere [J]. Energy Fuels, 2013, 27: 5699
|
[21] |
Henderson P J, Szakálos P, Pettersson R, et al. Reducing superheater corrosion in wood-fired boilers [J]. Mater. Corros., 2006, 57: 128
|
[22] |
Karlsson S, Jonsson T, Hall J, et al. Mitigation of fireside corrosion of stainless steel in power plants: A laboratory study of the influences of SO2 and KCl on initial stages of corrosion [J]. Energy Fuels, 2014, 28: 3102
|
[23] |
Aho M, Pasi V, Taipale R, et al. Effective new chemicals to prevent corrosion due to Chlorine in power plant superheaters [J]. Fuel, 2008, 87: 647
doi: 10.1016/j.fuel.2007.05.033
|
[24] |
Håkan K, Linda B, Åmand L E. The importance of SO2 and SO3 for sulphation of gaseous KCl-An experimental investigation in a biomass fired CFB boiler [J]. Combust. Flame, 2010, 157: 1649
doi: 10.1016/j.combustflame.2010.05.012
|
[25] |
Viklund P, Pettersson R, Hjörnhede A, et al. Effect of sulphur containing additive on initial corrosion of superheater tubes in waste fired boiler [J]. Corros. Eng. Sci. Technol., 2009, 44: 234
doi: 10.1179/174327809X419203
|
[26] |
Kassman H, Normann F, Åmand L E. The effect of oxygen and volatile combustibles on the sulphation of gaseous KCl [J]. Combust. Flame, 2013, 160: 2231
|
[27] |
Jonsson T, Folkeson N, Svensson J E, et al. An ESEM in situ investigation of initial stages of the KCl induced high temperature corrosion of a Fe-2.25Cr-1Mo steel at 400 ℃ [J]. Corros. Sci., 2011, 53: 2233
|
[28] |
Folkeson N, Jonsson T, Halvarsson M, et al. The influence of small amounts of KCl (s) on the high temperature corrosion of a Fe-2.25Cr-1Mo steel at 400 and 500 ℃ [J]. Mater. Corros., 2011, 62: 606
|
[29] |
Pettersson J, Folkeson N, Johansson L G, et al. The effects of KCl, K2SO4 and K2CO3 on the high temperature corrosion of a 304-Type austenitic stainless steel [J]. Oxid. Met., 2011, 76: 93
doi: 10.1007/s11085-011-9240-z
|
[30] |
Lehmusto J, Skrifvars B J, Yrjas P, et al. Comparison of Potassium chloride and Potassium carbonate with respect to their tendency to cause high temperature corrosion of stainless 304L steel [J]. Fuel Process. Technol., 2013, 105: 98
doi: 10.1016/j.fuproc.2011.12.016
|
[31] |
Enestam S, Bankiewicz D, Tuiremo J, et al. Are NaCl and KCl equally corrosive on superheater materials of steam boilers? [J]. Fuel, 2013, 104: 294
doi: 10.1016/j.fuel.2012.07.020
|
[32] |
Zhang W, He J J. Thermal corrosion behavior in mixed molten salt of different alkali metals of 12Cr1MoVG steel for heat pipe in waste incinerator [J]. Mater. Mech. Eng., 2019, 43(2): 13
|
[32] |
(张炜, 何建军. 垃圾焚烧炉热管用12Cr1MoVG钢在不同碱金属混合熔盐中的热腐蚀行为 [J]. 机械工程材料, 2019, 43(2): 13)
|
[33] |
Yang B, Zhong Z J, Huang Q X, et al. Research development of high temperature Chlorine corrosion in waste incineration boilers [J]. Guangdong Electr. Power, 2016, 29(6): 5
|
[33] |
(杨波, 钟志强, 黄巧贤等. 垃圾焚烧锅炉的高温氯腐蚀研究进展 [J]. 广东电力, 2016, 29(6): 5)
|
[34] |
Indacochea J E, Smith J L, Litko K R, et al. High-temperature oxidation and corrosion of structural materials in molten chlorides [J]. Oxid. Met., 2001, 55: 1
doi: 10.1023/A:1010333407304
|
[35] |
Pan T J, Li J. Investigation on accelerated corrosion of Fe-Si alloys induced by chloride salt film [J]. Corros. Sci. Prot. Technol., 2014. 26(5): 401
|
[35] |
(潘太军, 李杰. 氯化物盐膜下Fe-Si合金加速腐蚀行为的研究 [J]. 腐蚀科学与防护技术, 2014, 26(5): 401)
doi: 10.11903/1002.6495.2013.301
|
[36] |
Li Y S, Spiegel M, Shimada S. Corrosion behaviour of various model alloys with NaCl-KCl coating [J]. Mater. Chem. Phys., 2005, 93: 217
|
[37] |
Zahrani E M, Alfantazi A M. High temperature corrosion and electrochemical behavior of INCONEL 625 weld overlay in PbSO4-Pb3O4-PbCl2-CdO-ZnO molten salt medium [J]. Corros. Sci., 2014, 85: 60
doi: 10.1016/j.corsci.2014.03.034
|
[38] |
Sun H, Wang J Q, Li Z J, et al. Corrosion behavior of 316SS and Ni-based alloys in a ternary NaCl-KCl-MgCl2 molten salt [J]. Solar Energy, 2018, 171: 320
doi: 10.1016/j.solener.2018.06.094
|
[39] |
Bai X X, Zhang Y G. Research on treatment of Water-wall high temperature corrosion of waste heat boiler in municipal solid waste incinerator [J]. Environ. Sanitat. Eng., 2018, 26(3): 68
|
[39] |
(白贤祥, 张玉刚. 生活垃圾焚烧厂余热锅炉水冷壁高温腐蚀治理研究 [J]. 环境卫生工程, 2018, 26(3): 68)
|
[40] |
Pan C Y, Jiang X G, Shang N, et al. Research development of high temperature corrosion of HCl in flue gas from MSW incineration [J]. Boiler Technol., 2003, 34(5): 72
|
[40] |
(潘葱英, 蒋旭光, 尚娜等. 垃圾焚烧烟气中HCl的高温腐蚀研究进展 [J]. 锅炉技术, 2003, 34(5): 72)
|
[41] |
Kinnunen H, Hedman M, Engblom M, et al. The influence of flue gas temperature on lead chloride induced high temperature corrosion [J]. Fuel, 2017, 196: 241
doi: 10.1016/j.fuel.2017.01.082
|
[42] |
Skrifvars B J, Backman R, Hupa M, et al. Corrosion of superheater steel materials under alkali salt deposits Part 1: The effect of salt deposit composition and temperature [J]. Corros. Sci., 2008, 50: 1274
doi: 10.1016/j.corsci.2008.01.010
|
[43] |
Skrifvars B J, Westen-karlsson M, Hupa M, et al. Corrosion of super-heater steel materials under alkali salt deposits. Part 2: SEM analyses of different steel materials [J]. Corros. Sci., 2010, 52: 1011
doi: 10.1016/j.corsci.2009.11.026
|
[44] |
Hou P Y, Zhang H, Stringer J. Strong HCl effect on tube wastage in a simulated bubbling fluidized bed environment [J]. Wear, 2000, 237: 137
doi: 10.1016/S0043-1648(99)00305-1
|
[45] |
Schaal E, David N, Panteix P J, et al. Effect of chloride content in ash in oxidation kinetics of Ni-Based and Fe-based alloys [J]. Oxid. Met., 2015, 84: 307
doi: 10.1007/s11085-015-9556-1
|
[46] |
Pastén M S, Spiegel M. High temperature corrosion of metallic materials in simulated waste incineration environments at 300-600 ℃ [J]. Mater. Corros., 2006, 57: 192
doi: 10.1002/(ISSN)1521-4176
|
[47] |
Lu W M, Pan T J, Zhang K, et al. Accelerated corrosion of five commercial steels under a ZnCl2-KCl deposit in a reducing environment typical of waste gasification at 673-773 K [J]. Corros. Sci., 2008, 50: 1900
doi: 10.1016/j.corsci.2008.03.004
|
[48] |
Bankiewicz D, Yrjas P, Lindberg D, et al. Determination of the corrosivity of Pb-containing salt mixtures [J]. Corros. Sci., 2013, 66: 225
doi: 10.1016/j.corsci.2012.09.024
|
[49] |
Galetz M C, Bauer J T, Schuze M, et al. The influence of Copper in ash deposits on the corrosion of boiler tube alloys for waste-to-energy plants [J]. Mater. Corros., 2014, 65: 778
|
[50] |
Xu M L, Yan J H, Ma Z Y, et al. Mechanism analysis of ash deposits corrosion in waste incinerator [J]. Proc. CSEE, 2007, 27(23): 32
|
[50] |
(许明磊, 严建华, 马增益等. 垃圾焚烧炉受热面的积灰腐蚀机理分析 [J]. 中国电机工程学报, 2007, 27(23): 32)
|
[51] |
Ijiri M, Okada N, Kanetou S, et al. Thermal stress relaxation and high-temperature corrosion of Cr-Mo steel processed using multifunction cavitation [J]. Materials (Basel), 2018, 11: E2291
|
[52] |
Masaki U, Kamei Y, Fujii K. Effect of static stress on high temperature corrosion behavior of boiler tubes in waste incineration environment [J]. J. Jpn. Inst. Met., 2002, 66: 576
doi: 10.2320/jinstmet1952.66.6_576
|
[52] |
(Masaki U, Kamei Y, Fujii K. 廃棄物焼却ボイラの高温腐食に及ぼす応力の影響 [J]. 日本金属学会志, 2002, 66: 576)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|