Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (3): 205-214    DOI: 10.11902/1005.4537.2019.073
  综合评述 本期目录 | 过刊浏览 |
垃圾焚烧锅炉关键受热面腐蚀研究进展及方向思考
蒋旭光(), 刘晓博
浙江大学 能源清洁利用国家重点实验室 热能工程研究所 杭州 310027
Research Progress and Direction Thinking on Corrosion of Key Heat Transfer Components in Waste Incineration Boilers
JIANG Xuguang(), LIU Xiaobo
State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
全文: PDF(1058 KB)   HTML
摘要: 

综述了生活垃圾焚烧发电厂锅炉关键受热面的腐蚀问题研究进展,主要围绕3种常见的腐蚀类型—氯腐蚀、硫腐蚀和碱金属盐类腐蚀的腐蚀特点及发生机理进行了讨论,分析了金属材料、温度、腐蚀介质含量、水蒸气、重金属元素等影响因素,总结了当前研究的主要成果和不足,在此基础上提出了进一步的研究方向。

关键词 垃圾焚烧碱金属耦合腐蚀    
Abstract

The research progress on the corrosion of key heat transfer components of boilers in domestic waste incineration power plants was reviewed. The corrosion characteristics and mechanism of three common corrosion types including chlorine corrosion, sulfur corrosion and alkali metal salt corrosion have been discussed respectively. Factors affecting corrosion were analyzed,such as metal materials, temperature, corrosive medium content, water vapor and heavy metal elements. The main achievements and shortcomings of the current research were summarized, and on this basis, further research directions were also proposed.

Key wordswaste incineration    chlorine    sulfur    alkali metal    coupled corrosion
收稿日期: 2019-06-05     
ZTFLH:  TK224.9  
基金资助:国家重点研发计划(2018YFF0215001);国家重点研发计划(2018YFC1901302);国家重点研发计划(2017YFC0703100);国家自然科学基金创新群体(51621005);国家自然科学基金(51676172);浙江大学基本科研业务费专项资金(2018FZA4010);浙江大学基本科研业务费专项资金(2016FZA4010)
通讯作者: 蒋旭光     E-mail: jiangxg@zju.edu.cn
Corresponding author: JIANG Xuguang     E-mail: jiangxg@zju.edu.cn
作者简介: 蒋旭光,男,1965年生,教授

引用本文:

蒋旭光, 刘晓博. 垃圾焚烧锅炉关键受热面腐蚀研究进展及方向思考[J]. 中国腐蚀与防护学报, 2020, 40(3): 205-214.
Xuguang JIANG, Xiaobo LIU. Research Progress and Direction Thinking on Corrosion of Key Heat Transfer Components in Waste Incineration Boilers. Journal of Chinese Society for Corrosion and protection, 2020, 40(3): 205-214.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.073      或      https://www.jcscp.org/CN/Y2020/V40/I3/205

图1  焚烧炉受热面管壁温度与腐蚀速率关系[39]
图2  在He±5%O2±815 mg/m3 HCl中400~700 ℃下Fe的腐蚀的热重分析结果[5]
[1] National Bureau of Statistics of the People's Republic of China. China Statistical Yearbook-2017 [M]. Beijing: China Statistics Press, 2017
[1] (中华人民共和国国家统计局. 中国统计年鉴2017 [M]. 北京: 中国统计出版社, 2017)
[2] Fu L Q. Causes of corrosion and preventive measures of the heating surface of boilers in domestic waste incineration plant [J]. Metall. Collect., 2017, (5): 9
[2] (傅玲琼. 生活垃圾焚烧厂锅炉受热面腐蚀原因及预防措施 [J]. 工程技术研究, 2017, (5): 9)
[3] Wu F. Characteristics of chlorine corrosion at high temperature [J]. Power Syst. Eng., 2003, 19(1): 13
[3] (吴峰. 高温氯腐蚀的特点 [J]. 电站系统工程, 2003, 19(1): 13)
[4] Grabke E J, Reese E, Spiegel M. The effects of chlorides, Hydrogen chloride, and Sulfur dioxide in the oxidation of steels below deposits [J]. Corros. Sci., 1995, 37: 1023
doi: 10.1016/0010-938X(95)00011-8
[5] Zahs A, Spiegel M, Grabke H J. Chloridation and oxidation of iron, chromium, nickel and their alloys in chloridizing and oxidizing atmospheres at 400-700 ℃ [J]. Corros. Sci., 2000, 42: 1093
[6] Ma H T. High temperature corrosion of metallic materials induced by chloride salts [D]. Dalian: Dalian University of Technology, 2003
[6] 马海涛. 高温氯盐环境中金属材料的腐蚀 [D]. 大连: 大连理工大学, 2003)
[7] Li Y S, Niu Y, Spiegel M. High temperature interaction of Al/Si-modified Fe-Cr alloys with KCl [J]. Corros. Sci., 2007, 49: 1799
[8] Kawahara Y. Controlling factors of localized corrosion in boiler combustion gas environments [J]. Oxid. Met., 2016, 85: 127
[9] Xu H L, Yang J Y. Cause analysis and countermeasures for corrosion of superheater in waste incineration boiler [J]. Energy Environ., 2018, (1): 30
[9] (徐火力, 杨家燚. 垃圾焚烧锅炉过热器腐蚀原因分析及对策 [J]. 能源与环境, 2018, (1): 30)
[10] Li Y S, Niu Y, Liu G, et al. High temperature corrosion of metallic materials in waste incineration environment [J]. Corros. Sci. Prot. Technol., 2000, 12: 224
[10] (李远士, 牛焱, 刘刚等. 金属材料在垃圾焚烧环境中的高温腐蚀 [J]. 腐蚀科学与防护技术, 2000, 12: 224)
[11] Zhang N. Experimental study on high temperature corrosion of heat exchangers in waste to energy plant [D]. Tianjin: Tianjin University, 2016
[11] 张楠. 垃圾焚烧炉换热器高温腐蚀实验研究 [D]. 天津: 天津大学, 2016)
[12] Ruh A, Spiegel M. Thermodynamic and kinetic consideration on the corrosion of Fe, Ni and Cr beneath a molten KCl-ZnCl2 mixture [J]. Corros. Sci., 2006, 48: 6795
[13] Ishitsuka T, Nose K. Stability of protective oxide films in waste incineration environment-Solubility measurement of oxides in molten chlorides [J]. Corros. Sci., 2002, 44: 247
[14] Zhu J Z, Chen L Q, Gan K. Corrosion mechanism of alkali chloride during the incineration of refuse [J]. J. South China Univ. Technol. (Nat. Sci. Ed.), 2005, 33(3): 78
[14] (祝建中, 陈烈强, 甘轲. 垃圾焚烧气氛中碱金属氯化物的腐蚀机理 [J]. 华南理工大学学报: 自然科学版, 2005, 33(3): 78)
[15] Hou P Y, Prüßner K, Fairbrother D H, et al. Sulfur segregation to deposited Al2O3 film/alloy interface at 1000 ℃ [J]. Scr. Mater., 1998, 40: 241
[16] Gong B X. Influence on superheater high-temperature corrosion by flue gas components in incinerators and preventive measures [J]. Thermal Power Generat., 1995, (6): 54
[16] (龚佰勋. 垃圾焚烧炉烟气成分对过热器高温腐蚀的影响及其防止方法初探 [J]. 热力发电, 1995, (6): 54)
[17] Ma X Q. High temperature corrosion and countermeasure of S, Cl and its chemical compound on refuse incineration boiler [J]. Power Syst. Eng., 1997, 13(5): 39
[17] (马晓茜. 硫和氯及其化合物对垃圾焚烧炉的高温腐蚀与对策 [J]. 电站系统工程, 1997, 13(5): 39)
[18] Pan T J, Zeng C L, Niu Y. Corrosion of three commercial steels under ZnCl2-KCl deposits in a reducing atmosphere containing HCl and H2S at 400-500 ℃ [J]. Oxid. Met., 2007, 67: 107
doi: 10.1007/s11085-006-9047-5
[19] Fu G Y, Lin L H, Liu Q, et al. Hot corrosion behavior of Fe-Cr alloys with Na2SO4 coating [J]. J. Shenyang Univ. Chem. Technol., 2014, 28: 69
[19] (付广艳, 林立海, 刘群等. Fe-Cr合金在Na2SO4盐膜下的热腐蚀行为 [J]. 沈阳化工大学学报, 2014, 28: 69)
[20] Paneru M, Stein-Brzozowska G, Maier J, et al. Corrosion mechanism of alloy 310 austenitic steel beneath NaCl deposit under varying SO2 concentrations in an Oxy-fuel combustion atmosphere [J]. Energy Fuels, 2013, 27: 5699
[21] Henderson P J, Szakálos P, Pettersson R, et al. Reducing superheater corrosion in wood-fired boilers [J]. Mater. Corros., 2006, 57: 128
[22] Karlsson S, Jonsson T, Hall J, et al. Mitigation of fireside corrosion of stainless steel in power plants: A laboratory study of the influences of SO2 and KCl on initial stages of corrosion [J]. Energy Fuels, 2014, 28: 3102
[23] Aho M, Pasi V, Taipale R, et al. Effective new chemicals to prevent corrosion due to Chlorine in power plant superheaters [J]. Fuel, 2008, 87: 647
doi: 10.1016/j.fuel.2007.05.033
[24] Håkan K, Linda B, Åmand L E. The importance of SO2 and SO3 for sulphation of gaseous KCl-An experimental investigation in a biomass fired CFB boiler [J]. Combust. Flame, 2010, 157: 1649
doi: 10.1016/j.combustflame.2010.05.012
[25] Viklund P, Pettersson R, Hjörnhede A, et al. Effect of sulphur containing additive on initial corrosion of superheater tubes in waste fired boiler [J]. Corros. Eng. Sci. Technol., 2009, 44: 234
doi: 10.1179/174327809X419203
[26] Kassman H, Normann F, Åmand L E. The effect of oxygen and volatile combustibles on the sulphation of gaseous KCl [J]. Combust. Flame, 2013, 160: 2231
[27] Jonsson T, Folkeson N, Svensson J E, et al. An ESEM in situ investigation of initial stages of the KCl induced high temperature corrosion of a Fe-2.25Cr-1Mo steel at 400 ℃ [J]. Corros. Sci., 2011, 53: 2233
[28] Folkeson N, Jonsson T, Halvarsson M, et al. The influence of small amounts of KCl (s) on the high temperature corrosion of a Fe-2.25Cr-1Mo steel at 400 and 500 ℃ [J]. Mater. Corros., 2011, 62: 606
[29] Pettersson J, Folkeson N, Johansson L G, et al. The effects of KCl, K2SO4 and K2CO3 on the high temperature corrosion of a 304-Type austenitic stainless steel [J]. Oxid. Met., 2011, 76: 93
doi: 10.1007/s11085-011-9240-z
[30] Lehmusto J, Skrifvars B J, Yrjas P, et al. Comparison of Potassium chloride and Potassium carbonate with respect to their tendency to cause high temperature corrosion of stainless 304L steel [J]. Fuel Process. Technol., 2013, 105: 98
doi: 10.1016/j.fuproc.2011.12.016
[31] Enestam S, Bankiewicz D, Tuiremo J, et al. Are NaCl and KCl equally corrosive on superheater materials of steam boilers? [J]. Fuel, 2013, 104: 294
doi: 10.1016/j.fuel.2012.07.020
[32] Zhang W, He J J. Thermal corrosion behavior in mixed molten salt of different alkali metals of 12Cr1MoVG steel for heat pipe in waste incinerator [J]. Mater. Mech. Eng., 2019, 43(2): 13
[32] (张炜, 何建军. 垃圾焚烧炉热管用12Cr1MoVG钢在不同碱金属混合熔盐中的热腐蚀行为 [J]. 机械工程材料, 2019, 43(2): 13)
[33] Yang B, Zhong Z J, Huang Q X, et al. Research development of high temperature Chlorine corrosion in waste incineration boilers [J]. Guangdong Electr. Power, 2016, 29(6): 5
[33] (杨波, 钟志强, 黄巧贤等. 垃圾焚烧锅炉的高温氯腐蚀研究进展 [J]. 广东电力, 2016, 29(6): 5)
[34] Indacochea J E, Smith J L, Litko K R, et al. High-temperature oxidation and corrosion of structural materials in molten chlorides [J]. Oxid. Met., 2001, 55: 1
doi: 10.1023/A:1010333407304
[35] Pan T J, Li J. Investigation on accelerated corrosion of Fe-Si alloys induced by chloride salt film [J]. Corros. Sci. Prot. Technol., 2014. 26(5): 401
[35] (潘太军, 李杰. 氯化物盐膜下Fe-Si合金加速腐蚀行为的研究 [J]. 腐蚀科学与防护技术, 2014, 26(5): 401)
doi: 10.11903/1002.6495.2013.301
[36] Li Y S, Spiegel M, Shimada S. Corrosion behaviour of various model alloys with NaCl-KCl coating [J]. Mater. Chem. Phys., 2005, 93: 217
[37] Zahrani E M, Alfantazi A M. High temperature corrosion and electrochemical behavior of INCONEL 625 weld overlay in PbSO4-Pb3O4-PbCl2-CdO-ZnO molten salt medium [J]. Corros. Sci., 2014, 85: 60
doi: 10.1016/j.corsci.2014.03.034
[38] Sun H, Wang J Q, Li Z J, et al. Corrosion behavior of 316SS and Ni-based alloys in a ternary NaCl-KCl-MgCl2 molten salt [J]. Solar Energy, 2018, 171: 320
doi: 10.1016/j.solener.2018.06.094
[39] Bai X X, Zhang Y G. Research on treatment of Water-wall high temperature corrosion of waste heat boiler in municipal solid waste incinerator [J]. Environ. Sanitat. Eng., 2018, 26(3): 68
[39] (白贤祥, 张玉刚. 生活垃圾焚烧厂余热锅炉水冷壁高温腐蚀治理研究 [J]. 环境卫生工程, 2018, 26(3): 68)
[40] Pan C Y, Jiang X G, Shang N, et al. Research development of high temperature corrosion of HCl in flue gas from MSW incineration [J]. Boiler Technol., 2003, 34(5): 72
[40] (潘葱英, 蒋旭光, 尚娜等. 垃圾焚烧烟气中HCl的高温腐蚀研究进展 [J]. 锅炉技术, 2003, 34(5): 72)
[41] Kinnunen H, Hedman M, Engblom M, et al. The influence of flue gas temperature on lead chloride induced high temperature corrosion [J]. Fuel, 2017, 196: 241
doi: 10.1016/j.fuel.2017.01.082
[42] Skrifvars B J, Backman R, Hupa M, et al. Corrosion of superheater steel materials under alkali salt deposits Part 1: The effect of salt deposit composition and temperature [J]. Corros. Sci., 2008, 50: 1274
doi: 10.1016/j.corsci.2008.01.010
[43] Skrifvars B J, Westen-karlsson M, Hupa M, et al. Corrosion of super-heater steel materials under alkali salt deposits. Part 2: SEM analyses of different steel materials [J]. Corros. Sci., 2010, 52: 1011
doi: 10.1016/j.corsci.2009.11.026
[44] Hou P Y, Zhang H, Stringer J. Strong HCl effect on tube wastage in a simulated bubbling fluidized bed environment [J]. Wear, 2000, 237: 137
doi: 10.1016/S0043-1648(99)00305-1
[45] Schaal E, David N, Panteix P J, et al. Effect of chloride content in ash in oxidation kinetics of Ni-Based and Fe-based alloys [J]. Oxid. Met., 2015, 84: 307
doi: 10.1007/s11085-015-9556-1
[46] Pastén M S, Spiegel M. High temperature corrosion of metallic materials in simulated waste incineration environments at 300-600 ℃ [J]. Mater. Corros., 2006, 57: 192
doi: 10.1002/(ISSN)1521-4176
[47] Lu W M, Pan T J, Zhang K, et al. Accelerated corrosion of five commercial steels under a ZnCl2-KCl deposit in a reducing environment typical of waste gasification at 673-773 K [J]. Corros. Sci., 2008, 50: 1900
doi: 10.1016/j.corsci.2008.03.004
[48] Bankiewicz D, Yrjas P, Lindberg D, et al. Determination of the corrosivity of Pb-containing salt mixtures [J]. Corros. Sci., 2013, 66: 225
doi: 10.1016/j.corsci.2012.09.024
[49] Galetz M C, Bauer J T, Schuze M, et al. The influence of Copper in ash deposits on the corrosion of boiler tube alloys for waste-to-energy plants [J]. Mater. Corros., 2014, 65: 778
[50] Xu M L, Yan J H, Ma Z Y, et al. Mechanism analysis of ash deposits corrosion in waste incinerator [J]. Proc. CSEE, 2007, 27(23): 32
[50] (许明磊, 严建华, 马增益等. 垃圾焚烧炉受热面的积灰腐蚀机理分析 [J]. 中国电机工程学报, 2007, 27(23): 32)
[51] Ijiri M, Okada N, Kanetou S, et al. Thermal stress relaxation and high-temperature corrosion of Cr-Mo steel processed using multifunction cavitation [J]. Materials (Basel), 2018, 11: E2291
[52] Masaki U, Kamei Y, Fujii K. Effect of static stress on high temperature corrosion behavior of boiler tubes in waste incineration environment [J]. J. Jpn. Inst. Met., 2002, 66: 576
doi: 10.2320/jinstmet1952.66.6_576
[52] (Masaki U, Kamei Y, Fujii K. 廃棄物焼却ボイラの高温腐食に及ぼす応力の影響 [J]. 日本金属学会志, 2002, 66: 576)
[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[3] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[4] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[5] 赵博儒, 孙志, 赵健伟, 陈智栋. 正十六硫醇分子在Ag表面的自组装动力学及其保护作用[J]. 中国腐蚀与防护学报, 2020, 40(3): 281-288.
[6] 李向红, 邓书端, 徐昕. 木薯淀粉三元接枝共聚物对钢在H2SO4溶液中的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 105-114.
[7] 陈旭, 李帅兵, 郑忠硕, 肖继博, 明男希, 何川. X70管线钢在大庆土壤环境中微生物腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[8] 刘志峰,朱志平,石纯,黄赵鑫. 载流法制备硫酸露点腐蚀模拟气体的试验研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 1-9.
[9] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[10] 戚鹏, 万逸, 曾艳, 郑来宝, 张盾. 海洋环境中硫酸盐还原菌的快速测定方法研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 387-394.
[11] 余仁强,何建军,李微,任延杰,杨旺. 火电厂循环泵叶轮材料Cr30A在脱硫浆液腐蚀环境中的交互损伤失效行为研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 353-358.
[12] 吴堂清,周昭芬,王鑫铭,张德闯,尹付成,孙成. 微生物致裂的热力学和动力学分析[J]. 中国腐蚀与防护学报, 2019, 39(3): 227-234.
[13] 王长罡,魏洁,魏欣,穆鑫,薛芳,董俊华,柯伟,李国平. 几种超级不锈钢在模拟烟气脱硫环境中的缝隙腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 43-50.
[14] 李鑫,陈旭,宋武琦,杨佳星,吴明. pH值对X70钢在海泥模拟溶液中微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 565-572.
[15] 陈高红,胡远森,于美,刘建华,李国爱. 硫酸阳极化对2E12铝合金力学性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 579-586.