Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (2): 110-116    DOI: 10.11902/1005.4537.2016.090
  研究报告 本期目录 | 过刊浏览 |
腐蚀产物对纯Al 8A06长期大气腐蚀行为影响的研究
孙霜青1,郑弃非2,李春玲1(),王秀民1,胡松青1
1 中国石油大学 (华东) 理学院 青岛 266580
2 北京有色金属研究总院 国家有色金属复合材料工程技术研究中心 北京 100088
Effect of Corrosion Products on Long-term Atmospheric Corrosion of Pure Aluminum 8A06
Shuangqing SUN1,Qifei ZHENG2,Chunling LI1(),Xiumin WANG1,Songqing HU1
1 College of Science, China University of Petroleum (East China), Qingdao 266580, China
2 National Engineering and Technology Research Center for Nonferrous Metals Composites, Beijing General Research Institute for Nonferrous Metals, Beijing 100088, China
全文: PDF(5883 KB)   HTML
摘要: 

在海洋和工业大气环境中对纯Al 8A06进行为期20 a的现场暴露实验,利用电子探针 (EMPA)、波谱仪 (WDS) 和电化学阻抗 (EIS) 对腐蚀产物的形貌、元素组成和极化电阻Rp进行了分析和测试。结果表明,在两种大气环境中纯Al 8A06的腐蚀产物均主要由Al,O和S组成,但其腐蚀速率在工业大气环境下的约为海洋大气环境的1.5倍。在0.6 mol/L Na2SO4溶液中,极化电阻Rp从大到小顺序为:海洋大气环境中暴露20 a的试样>工业大气环境中暴露20 a的试样>8A06基体,这说明在海洋大气环境中腐蚀产物对基体的保护作用比工业大气环境中更好。

关键词 Al大气腐蚀腐蚀产物电子探针波谱仪电化学阻抗    
Abstract

Atmospheric corrosion products of pure aluminum alloy 8A06 exposed for 20 a in coastal- and industrial-atmosphere respectively was investigated by electron probe microanalysis (EPMA), wavelength-dispersive X-ray spectroscopy (WDS) and electrochemical impedance spectroscopy (EIS). Results show that the corrosion rate of the specimen exposed in industrial atmosphere is approximately 1.5 times higher than that exposed in coastal atmosphere, though the corrosion products in both atmospheres all mainly contained elements O, Al and S. In 0.6 mol/L Na2SO4 solution, Rp could be arranged in a decreasing order as follows: withdrawn specimens exposed for 20 a in coastal atmosphere>withdrawn specimens exposed for 20 a in industrial atmosphere>bare substrate of pure aluminum 8A06. This indicates that the protectiveness of corrosion products on the specimens exposed in coastal environment is better than that exposed in industrial environment.

Key wordsaluminum    atmospheric corrosion    corrosion products    EPMA    WDS    EIS
收稿日期: 2016-07-05     
基金资助:国家自然科学基金 (51201183和51501226),中央高校基本科研业务费专项资金 (14CX02221A和17CX05023) 及青岛市自主创新计划应用基础研究 (16-5-1-90-jch和15-9-1-46-jch)

引用本文:

孙霜青,郑弃非,李春玲,王秀民,胡松青. 腐蚀产物对纯Al 8A06长期大气腐蚀行为影响的研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 110-116.
Shuangqing SUN, Qifei ZHENG, Chunling LI, Xiumin WANG, Songqing HU. Effect of Corrosion Products on Long-term Atmospheric Corrosion of Pure Aluminum 8A06. Journal of Chinese Society for Corrosion and protection, 2017, 37(2): 110-116.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.090      或      https://www.jcscp.org/CN/Y2017/V37/I2/110

Test site Atmospheretype Geographic coordinate Average
temperature / ℃
Average
RH / %
Rain pH Deposition / mgm-2d-1
East longitude North latitude Cl- SO2
Wanning Coastal 110o30′ 18o58′ 24.4 86 5.0 46.75 4.24
Jiangjin Industrial 106o15′ 29o19′ 18.2 81 4.4 0.76 77.45
表1  万宁和江津试验站的主要气象和污染因素数据 (1990~2001)
图1  纯Al 8A06在万宁和江津试验站的腐蚀速率随暴露时间的变化曲线
图2  纯Al 8A06在万宁试验站暴露20 a后的宏观和微观腐蚀形貌
Position O Al S Si Cl Ca Fe
Front face Spot 1 49.90 41.64 5.89 1.18 0.86 0.14 0.39
Spot 2 49.93 40.83 5.61 2.15 0.69 0.14 0.66
Average 49.92 41.24 5.75 1.67 0.78 0.14 0.53
Back face Spot 3 55.65 40.93 1.90 --- 1.52 --- ---
Spot 4 55.21 42.08 1.65 --- 1.06 --- ---
Average 55.43 41.51 1.78 --- 1.29 -! ---
表2  纯铝8A06在万宁试验站暴露20 a后正面和背面腐蚀产物的WDS分析结果
图3  纯Al 8A06在江津试验站暴露20 a后的宏观和微观腐蚀形貌
图4  试样背面腐蚀产物形貌 (图3f) 的局部放大图
Location O Al S Si P C K Ca Fe
Front Face Outside of pit Spot 1 50.91 33.85 6.42 5.77 0.57 --- 0.28 0.23 1.97
Spot 2 54.30 27.56 6.91 7.33 0.35 --- 0.40 0.65 2.50
Average 52.61 30.71 6.67 6.55 0.46 --- 0.34 0.44 2.24
Inside ofpit Spot 3 23.31 55.97 0.90 10.16 0.35 --- 0.89 0.21 8.19
Spot 4 18.22 53.83 0.71 6.28 0.33 17.98 0.33 0.27 2.06
Average 20.77 54.90 0.81 8.22 0.34 8.99 0.61 0.24 5.13
Back Face Outerlayer Spot 5 47.68 41.79 3.72 4.85 --- --- 0.19 0.17 1.61
Spot 6 48.70 41.90 4.53 3.43 --- --- 0.19 0.29 0.95
Average 48.19 41.85 4.13 4.14 --- --- 0.19 0.23 1.28
Inner layer Spot 7 27.86 61.79 1.59 5.47 --- --- 0.21 0.95 2.15
Spot 8 23.62 63.98 1.68 --- 0.30 10.42 --- --- ---
Average 25.74 62.89 1.64 2.74 0.15 5.21 0.11 0.48 1.08
表3  纯Al 8A06在江津试验站暴露20 a后正面和背面腐蚀产物的WDS分析结果
图5  暴露20 a的纯铝8A06正面和背面在0.6 mol/L Na2SO4溶液 (pH值为5) 中浸泡不同时间后的Bode图
图6  暴露20 a的纯铝8A06正面和背面在0.6 mol/L Na2SO4溶液 (pH值为5) 中浸泡不同时间后的极化电阻
[1] Melchers R E.Bi-modal trend in the long-term corrosion of aluminium alloys[J]. Corros. Sci., 2014, 82: 239
[2] Morcillo M, Chico B, de la Fuente D, et al. Looking back on contributions in the field of atmospheric corrosion offered by the MICAT Ibero-American testing network[J]. Int. J. Corros., 2012, 2012: 824365
[3] de la Fuente D, Otero-Huerta E, Morcillo M. Studies of long-term weathering of aluminium in the atmosphere[J]. Corros. Sci., 2007, 49: 3134
[4] Davis J R.Corrosion of Aluminum and Aluminum Alloys[M]. Ohio: ASM International, 1999: 25
[5] Graedel T E.Corrosion mechanisms for aluminum exposed to the atmosphere[J]. J. Electrochem. Soc., 1989, 136: 204C
[6] González J A, Morcillo M, Escudero E, et al.Atmospheric corrosion of bare and anodized aluminium in a wide range of environmental conditions. Part I: Visual observations and gravimetric results[J]. Surf. Coat. Technol., 2002, 153: 225
[7] López V, González J, Otero E, et al.Atmospheric corrosion of bare and anodised aluminium in a wide range of environmental conditions. Part II: Electrochemical responses[J]. Surf. Coat. Technol., 2002, 153: 235
[8] Vilche J R, Varela F E, Acu?a G, et al.A survey of Argentinean atmospheric corrosion: I-aluminium and zinc samples[J]. Corros. Sci., 1995, 37: 941
[9] Liu Y J, Wang Z Y, Ke W.Study on influence of native oxide and corrosion products on atmospheric corrosion of pure Al[J]. Corros. Sci., 2014, 80: 169
[10] Chung S C, Sung S L, Hsien C C, et al.Application of EIS to the initial stages of atmospheric zinc corrosion[J]. J. Appl. Electrochem., 2000, 30: 607
[11] Yadav A P, Nishikata A, Tsuru T.Electrochemical impedance study on galvanized steel corrosion under cyclic wet-dry conditions—influence of time of wetness[J]. Corros. Sci., 2004, 46: 169
[12] Chen Y Y, Chung S C, Shih H C.Studies on the initial stages of zinc atmospheric corrosion in the presence of chloride[J]. Corros. Sci., 2006, 48: 3547
[13] Vargel C, Jacques M, Schmidt M P.Corrosion of Aluminium[M]. Oxford: Elsevier Ltd., 2004: 241
[14] Natishan P M, O’Grady W E. Chloride ion interactions with oxide-covered aluminum leading to pitting corrosion: a review[J]. J. Electrochem. Soc., 2014, 161: C421
[15] Blücher D B, Svensson J E, Johansson L G.The NaCl-induced atmospheric corrosion of aluminum: the influence of carbon dioxide and temperature[J]. J. Electrochem. Soc., 2003, 150: B93
[16] Blücher D B, Svensson J E, Johansson L G.Influence of ppb levels of SO2 on the atmospheric corrosion of aluminum in the presence of NaCl[J]. J. Electrochem. Soc., 2005, 152: B397
[1] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[2] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[3] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[4] 丁清苗, 秦永祥, 崔艳雨. 大气环境中飞机构件的电偶腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 455-462.
[5] 白海涛, 杨敏, 董小卫, 马云, 王瑞. CO2腐蚀产物膜的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[6] 王海卫, 常森, 栾新刚, 宋雪梅, 王稹, 李彦樟, 陈建利, 张计荣, 韩明, 丘丹圭. 纳米Al2O3改性SiBCN陶瓷高温粘接剂的制备与性能研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 367-372.
[7] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[8] 孙硕, 杨杰, 钱薪竹, 常人丽. Ni-Cr-P化学镀层的制备与电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[9] 范益,陈林恒,蔡佳兴,代芹芹,马宏驰,程学群. 热轧AH36船板钢在室内仓储条件下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[10] 王乐,易丹青,刘会群,蒋龙,冯春. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[11] 杨寅初,傅秀清,刘琳,马文科,沈莫奇. 喷射电沉积Ni-P-BN(h)-Al2O3复合镀层的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
[12] 潘成成,马超,夏大海. EBSD技术研究金属材料晶体取向对大气腐蚀萌生的影响机理[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.
[13] 赵晋斌,赵起越,陈林恒,黄运华,程学群,李晓刚. 不同表面处理方式对300M钢在青岛海洋大气环境下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[14] 张瑞,李雨,关蕾,王冠,王福雨. 热处理对激光选区熔化Ti6Al4V合金电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[15] 余春堂,阳颖飞,鲍泽斌,朱圣龙. 先进高温热障涂层用高性能粘接层制备及研究进展[J]. 中国腐蚀与防护学报, 2019, 39(5): 395-403.