Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (2): 81-92    DOI: 10.11902/1005.4537.2016.073
  综合评述 本期目录 | 过刊浏览 |
核级不锈钢的热老化研究进展
林晓冬,彭群家(),韩恩厚,柯伟
中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016
Review of Thermal Aging of Nuclear Grade Stainless Steels
Xiaodong LIN,Qunjia PENG(),En-Hou HAN,Wei KE
Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(6561 KB)   HTML
摘要: 

综述了热老化对核级铸造和焊接奥氏体不锈钢组织、结构和性能的影响、热老化动力学行为以及热老化脆性评估方法与寿命预测等方面的研究进展,分析了不锈钢的热老化脆性机制,指出了不锈钢热老化研究存在的问题及进一步的研究方向。

关键词 核级不锈钢热老化动力学脆性评估寿命预测脆化机制    
Abstract

Nuclear grade cast and welded austenitic stainless steels are subjected to thermal aging during long-term service in light water nuclear reactors (LWRs), primarily due to the existence of certain amount of ferrite in the steels. The thermal aging results in degradation of the mechanical and corrosion properties of the steels, which leads to a potential concern to the structural integrity of the relevant LWR components. This paper reviewed the recent research progress of the effect of thermal aging on microstructures and properties of the nuclear grade cast and welded stainless steels, as well as the kinetics, assessment and prediction methods for thermal aging. The mechanism of thermal aging induced embrittlement was discussed. Challenges and trends for the research of thermal aging in the future were also briefly addressed.

Key wordsnuclear grade stainless steel    thermal aging    kinetics    embrittlement assessment    lifetime prediction    embrittlement mechanism
收稿日期: 2016-06-07     
基金资助:国家自然科学基金 (51571204)

引用本文:

林晓冬,彭群家,韩恩厚,柯伟. 核级不锈钢的热老化研究进展[J]. 中国腐蚀与防护学报, 2017, 37(2): 81-92.
Xiaodong LIN, Qunjia PENG, En-Hou HAN, Wei KE. Review of Thermal Aging of Nuclear Grade Stainless Steels. Journal of Chinese Society for Corrosion and protection, 2017, 37(2): 81-92.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.073      或      https://www.jcscp.org/CN/Y2017/V37/I2/81

图1  CF8铸造奥氏体不锈钢,308不锈钢焊材和固溶处理的2205双相不锈钢的显微组织[3,27,28]
图2  Fe-Cr二元相图[34,35]和Fe-45%Cr-5%Ni相图的垂直截面[36]
图3  308L不锈钢焊材在335 ℃热老化20000 h后铁素体调幅分解结构[40]
图4  CF8M不锈钢铁素体内Cr含量波动和浓度频率分布[10]
图5  APT Cr面扫图和△Cr随热老化时间的变化情况[41]
图6  不同热老化条件下的CF3M铸造奥氏体不锈钢在铁素体中析出的G相及其选区衍射分析[53]
图7  308L不锈钢焊材在335,365和400 ℃下热老化不同时间后的Charpy-V试样冲击韧性转变曲线[37]
图8  308L不锈钢焊材在焊态和365 ℃下热老化20000 h后的室温冲击断口形貌[37]
图9  不同显微结构转变的动力学曲线示意图[14]
图10  CF8不锈钢的室温冲击韧性随热老化参数P的变化曲线[4]
图11  308L不锈钢焊材中铁素体硬度与SLEPR测试中峰值电流密度的关系[40]及2205不锈钢铁素体硬度与阳极极化测试中二次钝化峰值电流密度的关系[49]
图12  铁素体含量分别为21%,24%和13%的CF8奥氏体不锈钢的lg(CVN)-P关联曲线和下限曲线[87]
[1] Cicero S, Setién J, Gorrochategui I.Assessment of thermal aging embrittlement in a cast stainless steel valve and its effect on the structural integrity[J]. Nucl. Eng. Des., 2009, 239: 16
[2] Yi Y S, Shoji T.Detection and evaluation of material degradation of thermally aged duplex stainless steels: Electrochemical polarization test and AFM surface analysis[J]. J. Nucl. Mater., 1996, 231: 20
[3] Mathew M D, Lietzan L M, Murty K L, et al.Low temperature aging embrittlement of CF-8 stainless steel[J]. Mater. Sci. Eng., 1999, A269: 186
[4] Chung H M, Chopra O K.Microstructures of cast-duplex stainless steel after long-term aging [A]. Proceedings of the 2nd International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors[C]. Monterey: American Nuclear Society, 1986: 287
[5] Ming H L, Zhang Z M, Wang J Q, et al.Microstructural characterization of an SA508-309L/308L-316L domestic dissimilar metal welded safe-end joint[J]. Mater. Charact., 2014, 97: 101
[6] Hale G E, Garwood S J.Effect of aging on fracture behaviour of cast stainless steel and weldments[J]. Mater. Sci. Technol., 1990, 6: 230
[7] Li S L, Wang Y L, Li S X, et al.Microstructures and mechanical properties of cast austenite stainless steels after long-term thermal aging at low temperature[J]. Mater. Des., 2013, 50: 886
[8] Tavassoli A A, Bisson A, Soulat P.Ferrite decomposition in austenitic stainless steel weld metals[J]. Met. Sci., 1984, 18: 345
[9] Keown S R, Thomas R G.Role of delta ferrite in thermal aging of type 316 weld metals[J]. Met. Sci., 1981, 15: 386
[10] Danoix F, Auger P.Atom probe studies of the Fe-Cr system and stainless steels aged at intermediate temperature: a review[J]. Mater. Charact., 2000, 44: 177
[11] Trautwein A, Gysel W.Influence of long time aging of CF8 and CF8M cast steel at temperatures between 300 and 500 ℃ on the impact toughness and the structure properties[J]. Int. Cast Met. J., 1981, 6: 43
[12] Wang Y Q, Li S L, Yang B, et al.Research status and outlook on thermal aging of cast austenitic stainless steels used in primary coolant pipes of nuclear power plant[J]. Mater. Rev., 2012, 26(2): 101
[12] (王永强, 李时磊, 杨滨等. 核电站一回路主管道铸造奥氏体不锈钢热老化研究现状与展望[J]. 材料导报, 2012, 26(2): 101)
[13] Chung H M.Aging and life prediction of cast duplex stainless steel components[J]. Int. J. Pres. Ves. Pip., 1992, 50: 179
[14] Chung H M, Leax T R.Embrittlement of laboratory and reactor aged CF3, CF8, and CF8M duplex stainless steels[J]. Mater. Sci. Technol., 1990, 6: 249
[15] Chung H M, Chopra O K.Kinetics and imechanism of thermal aging embrittlement of duplex stainless steels [A]. Proceedings of the 3rd International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors[C]. Traverse City: The Metallurgical Society, 1987: 359
[16] Chopra O K, Chung H M.Initial assessment of the processes and significance of thermal aging in cast stainless steels [A]. Proceedings of the 16th Water Reactor Safety Information Meeting[C]. Gaithersburg: National Institute of Standards and Technology, 1988: 1
[17] Xue F, Wang Z X, Shu G G, et al.Thermal aging effect on Z3CN20.09M cast duplex stainless steel[J]. Nucl. Eng. Des., 2009, 239: 2217
[18] Li S L, Wang Y L, Cheng L, et al.Thermal aging mechanism of Z3CN20-09M cast austenite stainless steel[J]. J. Univ. Sci. Technol. Beijing, 2008, 30: 1117
[18] (李时磊, 王艳丽, 程路等. Z3CN20-09M铸造奥氏体不锈钢的热老化机理[J]. 北京科技大学学报, 2008, 30: 1117)
[19] Li S L, Wang Y L, Zhang H L, et al.Microstructure evolution and impact fracture behaviors of Z3CN20-09M stainless steels after long-term thermal aging[J]. J. Nucl. Mater., 2013, 433: 41
[20] Xue F, Wang Z X, Shu G G, et al.Thermal aging mechanism of the primary pipe CDSS [A]. Progress Report on China Nuclear Science and Technology[C]. Beijing: Chinese Nuclear Society, 2009: 1705
[20] (薛飞, 王兆希, 束国刚等. 一回路主管道双相不锈钢热老化机理研究 [A]. 中国核学会2009年学术年会论文集[C]. 北京: 中国核学会, 2009: 1705)
[21] Xue F, Yu W W, Wang Z X, et al.Evaluation of thermal aging effect on primary pipe material in nuclear power plant by micro hardness test method[J]. Atom. Energy Sci. Technol., 2012, 46: 809
[21] (薛飞, 余伟炜, 王兆希等. 显微硬度法分析核电站主管道热老化趋势[J]. 原子能科学技术, 2012, 46: 809)
[22] Ren S H, Xue F, Yu W W, et al.Reliability residual-life prediction method for thermal aging based on performance degradation[J]. Nucl. Power Eng., 2013, 34(5): 96
[22] (任淑红, 薛飞, 余伟炜等. 基于性能退化的热老化可靠性剩余寿命预测方法[J]. 核动力工程, 2013, 34(5): 96)
[23] Xue F, Shu G G, Ti W X, et al.Experimental study on thermal aging impact properties of austenitic stainless steel Z3CN20.09M[J]. Nucl. Power Eng., 2010, 31(1): 9
[23] (薛飞, 束国刚, 遆文新等. Z3CN20.09M奥氏体不锈钢热老化冲击性能试验研究[J]. 核动力工程, 2010, 31(1): 9)
[24] Xue F, Shu G G, Yu W W, et al.Evaluation of the thermal aging effect on Charpy impact properties of the primary pipe material in nuclear power station[J]. Eng. Mech., 2010, 27(8): 246
[24] (薛飞, 束国刚, 余伟炜等. 热老化对核电主管道材料冲击性能影响及老化趋势研究[J]. 工程力学, 2010, 27(8): 246)
[25] Abe H, Watanabe Y.Low-temperature aging characteristics of type 316L stainless steel welds: dependence on solidification mode[J]. Metall. Mater. Trans., 2008, 39A: 1392
[26] Brooks J A, Thompson A W.Microstructural development and solidification cracking susceptibility of austenitic stainless steel welds[J]. Int. Mater. Rev., 1991, 36: 16
[27] Vitek J M, David S A, Alexander D J, et al.Low temperature aging behavior of type 308 stainless steel weld metal[J]. Acta Metall. Mater., 1991, 39: 503
[28] Rovere C A D, Santos F S, Silva R, et al. Influence of long-term low-temperature aging on the microhardness and corrosion properties of duplex stainless steel[J]. Corros. Sci., 2013, 68: 84
[29] Weng K L, Chen H R, Yang J R.The low-temperature aging embrittlement in a 2205 duplex stainless steel[J]. Mater. Sci. Eng., 2004, A379: 119
[30] Auger P, Danoix F, Menand A, et al.Atom probe and transmission electron microscopy study of aging of cast duplex stainless steels[J]. Mater. Sci. Technol., 1990, 6: 301
[31] Takeuchi T, Kakubo Y, Matsukawa Y, et al.Effects of thermal aging on microstructure and hardness of stainless steel weld-overlay claddings of nuclear reactor pressure vessels[J]. J. Nucl. Mater., 2014, 452: 235
[32] Takeuchi T, Kameda J, Nagai Y, et al.Microstructural changes of a thermally aged stainless steel submerged arc weld overlay cladding of nuclear reactor pressure vessels[J]. J. Nucl. Mater., 2012, 425: 60
[33] Vrinat M, Cozar R, Meyzaud Y.Precipitated phases in the ferrite of aged cast duplex stainless steels[J]. Scripta Metall., 1986, 20: 1101
[34] Williams R O, Praxton H W.The nature of aging binary iron-chromium alloys around 500 ℃[J]. J. Iron Steel Inst., 1957, 185: 358
[35] Chandra D, Schwartz L H.M?ssbauer effect study of the 475 ℃ decomposition of Fe-Cr[J]. Metall. Trans., 1971, 2: 511
[36] Miller M K, Anderson I M, Bentley J, et al. Phase separation in the Fe-Cr-Ni system [J]. Appl. Surf. Sci., 1996, 94/95: 391
[37] Chandra K, Kain V, Bhutani V, et al.Low temperature thermal aging of austenitic stainless steel welds: kinetics and effects on mechanical properties[J]. Mater. Sci. Eng., 2012, A534: 163
[38] Alexander K B, Miller M K, Alexander D J, et al.Microscopical evaluation of low temperature aging of type 308 stainless steel weldments[J]. Mater. Sci. Technol., 1990, 6: 314
[39] Danoix F, Deconihout B, Bostel A, et al.Some new aspects on microstructural and morphological evolution of thermally aged duplex stainless steels[J]. Surf. Sci., 1992, 266: 409
[40] Chandra K, Kain V, Raja V S, et al.Low temperature thermal ageing embrittlement of austenitic stainless steel welds and its electrochemical assessment[J]. Corros. Sci., 2012, 54: 278
[41] Tucker J D, Miller M K, Young G A.Assessment of thermal embrittlement in duplex stainless steels 2003 and 2205 for nuclear power applications[J]. Acta Mater., 2015, 87: 15
[42] Hetherington M G, Hyde J M, Miller M K, et al.Measurement of the amplitude of a spinodal[J]. Surf. Sci., 1991, 246: 304
[43] Langer J S, Bar-on M, Miller H D. New computational method in the theory of spinodal decomposition[J]. Phys. Rev., 1975, 11A: 1417
[44] Auger P, Menand A, Blavette D.Statistical analysis of atom-probe data (II): Theoretical frequency distributions for periodic fluctuations and some applications[J]. J. Phys. Colloques, 1988, 49: C6-439
[45] Strangwood M, Druce S G.Aging effects in welded cast CF3 stainless steel[J]. Mater. Sci. Technol., 1990, 6: 237
[46] Pumphrey P H, Akhurst K N.Aging kinetics of CF3 cast stainless steel in temperature range 300~400 ℃[J]. Mater. Sci. Technol., 1990, 6: 211
[47] Leax T R, Brenner S S, Spitznagel J A.Atom probe examination of thermally ages CF8M cast stainless steel[J]. Metall. Trans., 1992, 23: 2725
[48] Kwon J D, Woo S W, Lee Y S, et al.Effects of thermal aging on the low cycle fatigue of austenitic-ferritic duplex cast stainless steel behavior[J]. Nucl. Eng. Des., 2001, 206: 35
[49] Chandra K, Singhal R, Kain V, et al.Low temperature embrittlement of duplex stainless steel: correlation between mechanical and electrochemical behavior[J]. Mater. Sci. Eng., 2010, A527: 3904
[50] Kawaguchi S, Sakamoto N, Takano G, et al.Microstructural changes and fracture behavior of CF8M duplex stainless steels after long-term aging[J]. Nucl. Eng. Des., 1997, 174: 273
[51] Bonnet S, Bourgoin J, Champredonde J, et al.Relationship between evolution of mechanical properties of various cast duplex stainless steels and metallurgical and aging parameters: outline of current EDF programes[J]. Mater. Sci. Technol., 1990, 6: 221
[52] Miller M K, Bentley J, Brenner S S, et al.Long term thermal aging of type CF 8 stainless steel[J]. J. Phys. Colloques, 1984, 45: C9-385
[53] Hamaoka T, Nomoto A, Nishida K, et al.Effects of aging temperature on G-phase precipitation and ferrite-phase decomposition in duplex stainless steel[J]. Philos. Mag., 2012, 92: 4354
[54] Li S L, Wang Y L, Wang X T, et al.G-phase precipitation in duplex stainless steels after long-term thermal aging: A high-resolution transmission electron microscopy study[J]. J. Nucl. Mater., 2014, 452: 382
[55] Vitek J M.G-phase formation in aged type 308 stainless steel[J]. Metall. Trans., 1987, 18A: 154
[56] Mateo A, Llanes L, Anglada M, et al.Characterization of the intermetallic G-phase in an AISI 329 duplex stainless steel[J]. J. Mater. Sci., 1997, 32: 4533
[57] Pareige C, Emo J, Saillet S, et al.Kinetics of G-phase precipitation and spinodal decomposition in very long aged ferrite of a Mo-free duplex stainless steel[J]. J. Nucl. Mater., 2015, 465: 383
[58] Yamada T, Okano S, Kuwano H.Mechanical property and microstructural change by thermal aging of SCS14A cast duplex stainless steel[J]. J. Nucl. Mater., 2006, 350: 47
[59] Li S L, Zhang H L, Wang Y L, et al.Annealing induced recovery of long-term thermal aging embrittlement in a duplex stainless steel[J]. Mater. Sci. Eng., 2013, A564: 85
[60] Danoix F, Auger P, Blavette D.Hardening of aged duplex stainless steels by spinodal decomposition[J]. Microsc. Microanal., 2004, 10: 349
[61] Kwon J D, Ihn J H, Park J C, et al.An evaluation of cast stainless steel (CF8M) fracture toughness caused by thermal aging at 430 ℃[J]. KSME Int. J., 2002, 16: 902
[62] Lucas T, Ballinger R G, Hanninen H, et al.Effect of thermal aging on SCC, material properties and fracture toughness of stainless steel weld metals [A]. Proceeding of the 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors[C]. Chichester: John Wiley and Sons, 2011: 883
[63] Chen W F, Xue F, Tian Y, et al.Effect of thermal aging on the low cycle fatigue behavior of Z3CN20.09M cast duplex stainless steel[J]. Mater. Sci. Eng., 2015, A646: 263
[64] Calonne V, Gourgues A F, Pineau A.Fatigue crack propagation in cast duplex stainless steels: thermal ageing and microstructural effects[J]. Fatigue Fract. Eng. Mater. Struct., 2004, 27: 31
[65] Yao Y H, Wei J F, Wang Z P.Effect of long-term thermal aging on the mechanical properties of casting duplex stainless steels[J]. Mater. Sci. Eng., 2012, A551: 116
[66] Alexander D J, Alexander K B, Miller M K, et al.The effect of aging at 343°C on the mechanical properties and microstructure of type 308 stainless steel weldments [A]. Proceeding of the 1st International Conference on Microstructures and Mechanical Properties of Aging Materials[C]. Warrendale: Minrals, Metals and Materials Society, 1992: 263
[67] Wang Y Q, Yang B, Han J, et al.Localized corrosion of thermally aged cast duplex stainless steel for primary coolant pipes of nuclear power plant[J]. Procedia Eng., 2012, 36: 88
[68] Kuri S E, May J E, Moreno J R S. Induced susceptibility to pitting corrosion in duplex stainless steel due to long aging at low temperatures[J]. Mater. Corros., 2001, 52: 785
[69] Kim J H, Ballinger R G.Stress corrosion cracking crack growth behavior of type 316L stainless steel weld metals in boiling water reactor environments[J]. Corrosion, 2008, 64: 645
[70] Li S L, Wang Y L, Wang H, et al.Effects of long-term thermal aging on the stress corrosion cracking behavior of cast austenitic stainless steels in simulated PWR primary water[J]. J. Nucl. Mater., 2016, 469: 262
[71] Lai C L, Lu W F, Huang J Y.Effect of δ-ferrite content on the stress corrosion cracking behavior of cast austenitic stainless steel in high-temperature water environment[J]. Corrosion, 2014, 70: 591
[72] Pareige C, Novy S, Saillet S, et al.Study of phase transformation and mechanical properties evolution of duplex stainless steels after long term thermal ageing (>20 years)[J]. J. Nucl. Mater., 2011, 411: 90
[73] González J J, Gutiérrez-Solana F, Sánchez L, et al.Low-temperature aging kinetics in cast duplex stainless steels: Experimental characterization[J]. J. Test. Eval., 1997, 25: 154
[74] Slama G, Petrequin P, Mager T.Effect of aging on mechanical properties of austenitic stainless steel castings and welds [A]. SMiRT Post Conference Seminar 6-Assuring Structural Integrity of Steel Reactor Pressure Boundary Components[C]. Monterey, 1983: 29
[75] Miller M K, Hyde J M, Cerezo A, et al. Comparison of low temperature decomposition in Fe-Cr and duplex stainless steels [J]. Appl. Surf. Sci., 1995, 87/88: 323
[76] Nakano K, Kanao M, Hoshino A.Effects of Ni content and austenite phase on low temperature toughness and embrittlement behaviour of Fe-26% Cr alloys[J]. Tetsu Hag., 1976, 62: 1219
[77] Jeon J Y, Kim Y J, Lee M Y, et al.A method to quantify thermal aging effects on fracture toughness of cast stainless steels (CSSs)[J]. Procedia Mater. Sci., 2014, 3: 997
[78] Park J S, Yoon Y K.Evaluation of thermal aging embrittlement of duplex stainless steels by electrochemical method[J]. Scripta Metall. Mater., 1995, 32: 1163
[79] ?íhal V, Lasek S, Blahetová M, et al.Trends in the electrochemical polarization potentiodynamic reactivation method-EPR[J]. Chem. Biochem. Eng. Quart., 2007, 21: 47
[80] ?íhal V, ?tefec R, Shoji T, et al. Electrochemical potentiodynamic reactivation: development and applications of the EPR test [J]. Key Eng. Mater., 2004, 261-263: 855
[81] Aydo?du G H, Aydinol M K.Determination of susceptibility to intergranular corrosion and electrochemical reactivation behaviour of AISI 316L type stainless steel[J]. Corros. Sci., 2006, 48: 3565
[82] Yi Y S, Tomobe T, Watanabe Y, et al.Nondestructive evaluation of thermal aging embrittlement of duplex stainless steels [A]. Proceedings of the 6th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors[C]. Warrendale: Minerals, Metals and Materials Society, 1993: 409
[83] Yi Y S, Shoji T.Quantitative evaluation of material degradation of thermally aged duplex stainless steels using chemical immersion test[J]. J. Nucl. Mater., 1996, 240: 62
[84] Fujioka T, Kashima K.A sensitivity study in probabilistic fracture mechanics analysis of light water reactor carbon steel pipe[J]. Int. J. Pres. Ves. Pip., 1992, 52: 403
[85] Lee S M, Chang Y S, Choi J B, et al.Failure probability assessment of wall-thinned nuclear pipes using probabilistic fracture mechanics[J]. Nucl. Eng. Des., 2006, 236: 350
[86] Li S X, Zhang H L, Li S L, et al.Probabilistic fracture mechanics analysis of thermally aged nuclear piping in a pressurized water reactor[J]. Nucl. Eng. Des., 2013, 265: 611
[87] Jaske C E, Shah V N.Life assessment procedure for LWR cast stainless steel components [A]. Proceedings of the 4th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors[C]. South Creek Drive: National Association of Corrosion Engineers, 1990: 66
[88] Jaske C E, Shah V N, Weidenhamer G H.Life assessment procedures for major LWR (light water reactor) components: cast stainless steel components [R]. Idaho Falls: Idaho National Engineering Laboratory, 1990
[1] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[2] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[3] 王帅星,杜楠,刘道新,肖金华,邓丹萍. X80钢在酸性红壤模拟液及室外红壤中的腐蚀动力学规律及相关性分析[J]. 中国腐蚀与防护学报, 2019, 39(1): 18-28.
[4] 刘峥, 李海莹, 王浩, 赵永, 谢思维, 张淑芬. 分子动力学模拟水溶液中席夫碱基表面活性剂在Zn表面的吸附行为[J]. 中国腐蚀与防护学报, 2018, 38(4): 381-390.
[5] 曹发和, 柳晓燕, 朱泽洁, 叶珍妮, 刘盼, 张鉴清. 扫描电化学显微镜的数值模拟和距离控制及其应用[J]. 中国腐蚀与防护学报, 2017, 37(5): 395-401.
[6] 戴芸,刘胜胆,邓运来,张新明. 7020铝合金在3.5%NaCl溶液中的点蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(3): 279-286.
[7] 艾莹珺,杜楠,赵晴,黄世新,王力强,文庆杰. 温度对304不锈钢亚稳蚀孔萌生和稳态蚀孔几何特征的影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 135-141.
[8] 赵景茂,赵起锋,姜瑞景. 咪唑啉缓蚀剂在CO2/H2S共存体系中的构效关系研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 142-147.
[9] 张新生,曹乃宁,李亚云. 基于Gumbel极值I型分布埋地油气管道的剩余寿命预测[J]. 中国腐蚀与防护学报, 2016, 36(4): 370-374.
[10] 聂亚楠,沈浩,谷坤鹏,王成启. 玻璃钢复合材料耐海水腐蚀性能及抗Cl-渗透寿命预测[J]. 中国腐蚀与防护学报, 2016, 36(4): 357-362.
[11] 刘海霞,程学群,李晓刚,肖葵,董超芳. A1060纯Al的海洋大气环境腐蚀寿命预测模型研究[J]. 中国腐蚀与防护学报, 2016, 36(4): 349-356.
[12] 赵景茂,赵雄,姜瑞景. 在动态H2S/CO2体系中疏水链上的双键对咪唑啉衍生物缓蚀性能的影响[J]. 中国腐蚀与防护学报, 2015, 35(6): 505-509.
[13] 陈启萌,张俊喜,原徐杰,戴念维. 外加交流电场对薄液膜中氧扩散的影响[J]. 中国腐蚀与防护学报, 2015, 35(6): 549-555.
[14] 苏铁军, 罗运柏, 李克华, 李凡修, 邓仕英, 习伟. 苯并咪唑-N-曼尼希碱对盐酸中N80钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2015, 35(5): 415-422.
[15] 冯丽娟,赵康文,杨怀玉,唐囡,王福会,上官帖. 混凝土模拟液中咪唑啉衍生物与四乙烯五胺间缓蚀协同效应[J]. 中国腐蚀与防护学报, 2015, 35(4): 297-304.