|
|
核级不锈钢的热老化研究进展 |
林晓冬,彭群家( ),韩恩厚,柯伟 |
中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016 |
|
Review of Thermal Aging of Nuclear Grade Stainless Steels |
Xiaodong LIN,Qunjia PENG( ),En-Hou HAN,Wei KE |
Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
林晓冬,彭群家,韩恩厚,柯伟. 核级不锈钢的热老化研究进展[J]. 中国腐蚀与防护学报, 2017, 37(2): 81-92.
Xiaodong LIN,
Qunjia PENG,
En-Hou HAN,
Wei KE.
Review of Thermal Aging of Nuclear Grade Stainless Steels. Journal of Chinese Society for Corrosion and protection, 2017, 37(2): 81-92.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2016.073
或
https://www.jcscp.org/CN/Y2017/V37/I2/81
|
[1] | Cicero S, Setién J, Gorrochategui I.Assessment of thermal aging embrittlement in a cast stainless steel valve and its effect on the structural integrity[J]. Nucl. Eng. Des., 2009, 239: 16 | [2] | Yi Y S, Shoji T.Detection and evaluation of material degradation of thermally aged duplex stainless steels: Electrochemical polarization test and AFM surface analysis[J]. J. Nucl. Mater., 1996, 231: 20 | [3] | Mathew M D, Lietzan L M, Murty K L, et al.Low temperature aging embrittlement of CF-8 stainless steel[J]. Mater. Sci. Eng., 1999, A269: 186 | [4] | Chung H M, Chopra O K.Microstructures of cast-duplex stainless steel after long-term aging [A]. Proceedings of the 2nd International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors[C]. Monterey: American Nuclear Society, 1986: 287 | [5] | Ming H L, Zhang Z M, Wang J Q, et al.Microstructural characterization of an SA508-309L/308L-316L domestic dissimilar metal welded safe-end joint[J]. Mater. Charact., 2014, 97: 101 | [6] | Hale G E, Garwood S J.Effect of aging on fracture behaviour of cast stainless steel and weldments[J]. Mater. Sci. Technol., 1990, 6: 230 | [7] | Li S L, Wang Y L, Li S X, et al.Microstructures and mechanical properties of cast austenite stainless steels after long-term thermal aging at low temperature[J]. Mater. Des., 2013, 50: 886 | [8] | Tavassoli A A, Bisson A, Soulat P.Ferrite decomposition in austenitic stainless steel weld metals[J]. Met. Sci., 1984, 18: 345 | [9] | Keown S R, Thomas R G.Role of delta ferrite in thermal aging of type 316 weld metals[J]. Met. Sci., 1981, 15: 386 | [10] | Danoix F, Auger P.Atom probe studies of the Fe-Cr system and stainless steels aged at intermediate temperature: a review[J]. Mater. Charact., 2000, 44: 177 | [11] | Trautwein A, Gysel W.Influence of long time aging of CF8 and CF8M cast steel at temperatures between 300 and 500 ℃ on the impact toughness and the structure properties[J]. Int. Cast Met. J., 1981, 6: 43 | [12] | Wang Y Q, Li S L, Yang B, et al.Research status and outlook on thermal aging of cast austenitic stainless steels used in primary coolant pipes of nuclear power plant[J]. Mater. Rev., 2012, 26(2): 101 | [12] | (王永强, 李时磊, 杨滨等. 核电站一回路主管道铸造奥氏体不锈钢热老化研究现状与展望[J]. 材料导报, 2012, 26(2): 101) | [13] | Chung H M.Aging and life prediction of cast duplex stainless steel components[J]. Int. J. Pres. Ves. Pip., 1992, 50: 179 | [14] | Chung H M, Leax T R.Embrittlement of laboratory and reactor aged CF3, CF8, and CF8M duplex stainless steels[J]. Mater. Sci. Technol., 1990, 6: 249 | [15] | Chung H M, Chopra O K.Kinetics and imechanism of thermal aging embrittlement of duplex stainless steels [A]. Proceedings of the 3rd International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors[C]. Traverse City: The Metallurgical Society, 1987: 359 | [16] | Chopra O K, Chung H M.Initial assessment of the processes and significance of thermal aging in cast stainless steels [A]. Proceedings of the 16th Water Reactor Safety Information Meeting[C]. Gaithersburg: National Institute of Standards and Technology, 1988: 1 | [17] | Xue F, Wang Z X, Shu G G, et al.Thermal aging effect on Z3CN20.09M cast duplex stainless steel[J]. Nucl. Eng. Des., 2009, 239: 2217 | [18] | Li S L, Wang Y L, Cheng L, et al.Thermal aging mechanism of Z3CN20-09M cast austenite stainless steel[J]. J. Univ. Sci. Technol. Beijing, 2008, 30: 1117 | [18] | (李时磊, 王艳丽, 程路等. Z3CN20-09M铸造奥氏体不锈钢的热老化机理[J]. 北京科技大学学报, 2008, 30: 1117) | [19] | Li S L, Wang Y L, Zhang H L, et al.Microstructure evolution and impact fracture behaviors of Z3CN20-09M stainless steels after long-term thermal aging[J]. J. Nucl. Mater., 2013, 433: 41 | [20] | Xue F, Wang Z X, Shu G G, et al.Thermal aging mechanism of the primary pipe CDSS [A]. Progress Report on China Nuclear Science and Technology[C]. Beijing: Chinese Nuclear Society, 2009: 1705 | [20] | (薛飞, 王兆希, 束国刚等. 一回路主管道双相不锈钢热老化机理研究 [A]. 中国核学会2009年学术年会论文集[C]. 北京: 中国核学会, 2009: 1705) | [21] | Xue F, Yu W W, Wang Z X, et al.Evaluation of thermal aging effect on primary pipe material in nuclear power plant by micro hardness test method[J]. Atom. Energy Sci. Technol., 2012, 46: 809 | [21] | (薛飞, 余伟炜, 王兆希等. 显微硬度法分析核电站主管道热老化趋势[J]. 原子能科学技术, 2012, 46: 809) | [22] | Ren S H, Xue F, Yu W W, et al.Reliability residual-life prediction method for thermal aging based on performance degradation[J]. Nucl. Power Eng., 2013, 34(5): 96 | [22] | (任淑红, 薛飞, 余伟炜等. 基于性能退化的热老化可靠性剩余寿命预测方法[J]. 核动力工程, 2013, 34(5): 96) | [23] | Xue F, Shu G G, Ti W X, et al.Experimental study on thermal aging impact properties of austenitic stainless steel Z3CN20.09M[J]. Nucl. Power Eng., 2010, 31(1): 9 | [23] | (薛飞, 束国刚, 遆文新等. Z3CN20.09M奥氏体不锈钢热老化冲击性能试验研究[J]. 核动力工程, 2010, 31(1): 9) | [24] | Xue F, Shu G G, Yu W W, et al.Evaluation of the thermal aging effect on Charpy impact properties of the primary pipe material in nuclear power station[J]. Eng. Mech., 2010, 27(8): 246 | [24] | (薛飞, 束国刚, 余伟炜等. 热老化对核电主管道材料冲击性能影响及老化趋势研究[J]. 工程力学, 2010, 27(8): 246) | [25] | Abe H, Watanabe Y.Low-temperature aging characteristics of type 316L stainless steel welds: dependence on solidification mode[J]. Metall. Mater. Trans., 2008, 39A: 1392 | [26] | Brooks J A, Thompson A W.Microstructural development and solidification cracking susceptibility of austenitic stainless steel welds[J]. Int. Mater. Rev., 1991, 36: 16 | [27] | Vitek J M, David S A, Alexander D J, et al.Low temperature aging behavior of type 308 stainless steel weld metal[J]. Acta Metall. Mater., 1991, 39: 503 | [28] | Rovere C A D, Santos F S, Silva R, et al. Influence of long-term low-temperature aging on the microhardness and corrosion properties of duplex stainless steel[J]. Corros. Sci., 2013, 68: 84 | [29] | Weng K L, Chen H R, Yang J R.The low-temperature aging embrittlement in a 2205 duplex stainless steel[J]. Mater. Sci. Eng., 2004, A379: 119 | [30] | Auger P, Danoix F, Menand A, et al.Atom probe and transmission electron microscopy study of aging of cast duplex stainless steels[J]. Mater. Sci. Technol., 1990, 6: 301 | [31] | Takeuchi T, Kakubo Y, Matsukawa Y, et al.Effects of thermal aging on microstructure and hardness of stainless steel weld-overlay claddings of nuclear reactor pressure vessels[J]. J. Nucl. Mater., 2014, 452: 235 | [32] | Takeuchi T, Kameda J, Nagai Y, et al.Microstructural changes of a thermally aged stainless steel submerged arc weld overlay cladding of nuclear reactor pressure vessels[J]. J. Nucl. Mater., 2012, 425: 60 | [33] | Vrinat M, Cozar R, Meyzaud Y.Precipitated phases in the ferrite of aged cast duplex stainless steels[J]. Scripta Metall., 1986, 20: 1101 | [34] | Williams R O, Praxton H W.The nature of aging binary iron-chromium alloys around 500 ℃[J]. J. Iron Steel Inst., 1957, 185: 358 | [35] | Chandra D, Schwartz L H.M?ssbauer effect study of the 475 ℃ decomposition of Fe-Cr[J]. Metall. Trans., 1971, 2: 511 | [36] | Miller M K, Anderson I M, Bentley J, et al. Phase separation in the Fe-Cr-Ni system [J]. Appl. Surf. Sci., 1996, 94/95: 391 | [37] | Chandra K, Kain V, Bhutani V, et al.Low temperature thermal aging of austenitic stainless steel welds: kinetics and effects on mechanical properties[J]. Mater. Sci. Eng., 2012, A534: 163 | [38] | Alexander K B, Miller M K, Alexander D J, et al.Microscopical evaluation of low temperature aging of type 308 stainless steel weldments[J]. Mater. Sci. Technol., 1990, 6: 314 | [39] | Danoix F, Deconihout B, Bostel A, et al.Some new aspects on microstructural and morphological evolution of thermally aged duplex stainless steels[J]. Surf. Sci., 1992, 266: 409 | [40] | Chandra K, Kain V, Raja V S, et al.Low temperature thermal ageing embrittlement of austenitic stainless steel welds and its electrochemical assessment[J]. Corros. Sci., 2012, 54: 278 | [41] | Tucker J D, Miller M K, Young G A.Assessment of thermal embrittlement in duplex stainless steels 2003 and 2205 for nuclear power applications[J]. Acta Mater., 2015, 87: 15 | [42] | Hetherington M G, Hyde J M, Miller M K, et al.Measurement of the amplitude of a spinodal[J]. Surf. Sci., 1991, 246: 304 | [43] | Langer J S, Bar-on M, Miller H D. New computational method in the theory of spinodal decomposition[J]. Phys. Rev., 1975, 11A: 1417 | [44] | Auger P, Menand A, Blavette D.Statistical analysis of atom-probe data (II): Theoretical frequency distributions for periodic fluctuations and some applications[J]. J. Phys. Colloques, 1988, 49: C6-439 | [45] | Strangwood M, Druce S G.Aging effects in welded cast CF3 stainless steel[J]. Mater. Sci. Technol., 1990, 6: 237 | [46] | Pumphrey P H, Akhurst K N.Aging kinetics of CF3 cast stainless steel in temperature range 300~400 ℃[J]. Mater. Sci. Technol., 1990, 6: 211 | [47] | Leax T R, Brenner S S, Spitznagel J A.Atom probe examination of thermally ages CF8M cast stainless steel[J]. Metall. Trans., 1992, 23: 2725 | [48] | Kwon J D, Woo S W, Lee Y S, et al.Effects of thermal aging on the low cycle fatigue of austenitic-ferritic duplex cast stainless steel behavior[J]. Nucl. Eng. Des., 2001, 206: 35 | [49] | Chandra K, Singhal R, Kain V, et al.Low temperature embrittlement of duplex stainless steel: correlation between mechanical and electrochemical behavior[J]. Mater. Sci. Eng., 2010, A527: 3904 | [50] | Kawaguchi S, Sakamoto N, Takano G, et al.Microstructural changes and fracture behavior of CF8M duplex stainless steels after long-term aging[J]. Nucl. Eng. Des., 1997, 174: 273 | [51] | Bonnet S, Bourgoin J, Champredonde J, et al.Relationship between evolution of mechanical properties of various cast duplex stainless steels and metallurgical and aging parameters: outline of current EDF programes[J]. Mater. Sci. Technol., 1990, 6: 221 | [52] | Miller M K, Bentley J, Brenner S S, et al.Long term thermal aging of type CF 8 stainless steel[J]. J. Phys. Colloques, 1984, 45: C9-385 | [53] | Hamaoka T, Nomoto A, Nishida K, et al.Effects of aging temperature on G-phase precipitation and ferrite-phase decomposition in duplex stainless steel[J]. Philos. Mag., 2012, 92: 4354 | [54] | Li S L, Wang Y L, Wang X T, et al.G-phase precipitation in duplex stainless steels after long-term thermal aging: A high-resolution transmission electron microscopy study[J]. J. Nucl. Mater., 2014, 452: 382 | [55] | Vitek J M.G-phase formation in aged type 308 stainless steel[J]. Metall. Trans., 1987, 18A: 154 | [56] | Mateo A, Llanes L, Anglada M, et al.Characterization of the intermetallic G-phase in an AISI 329 duplex stainless steel[J]. J. Mater. Sci., 1997, 32: 4533 | [57] | Pareige C, Emo J, Saillet S, et al.Kinetics of G-phase precipitation and spinodal decomposition in very long aged ferrite of a Mo-free duplex stainless steel[J]. J. Nucl. Mater., 2015, 465: 383 | [58] | Yamada T, Okano S, Kuwano H.Mechanical property and microstructural change by thermal aging of SCS14A cast duplex stainless steel[J]. J. Nucl. Mater., 2006, 350: 47 | [59] | Li S L, Zhang H L, Wang Y L, et al.Annealing induced recovery of long-term thermal aging embrittlement in a duplex stainless steel[J]. Mater. Sci. Eng., 2013, A564: 85 | [60] | Danoix F, Auger P, Blavette D.Hardening of aged duplex stainless steels by spinodal decomposition[J]. Microsc. Microanal., 2004, 10: 349 | [61] | Kwon J D, Ihn J H, Park J C, et al.An evaluation of cast stainless steel (CF8M) fracture toughness caused by thermal aging at 430 ℃[J]. KSME Int. J., 2002, 16: 902 | [62] | Lucas T, Ballinger R G, Hanninen H, et al.Effect of thermal aging on SCC, material properties and fracture toughness of stainless steel weld metals [A]. Proceeding of the 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors[C]. Chichester: John Wiley and Sons, 2011: 883 | [63] | Chen W F, Xue F, Tian Y, et al.Effect of thermal aging on the low cycle fatigue behavior of Z3CN20.09M cast duplex stainless steel[J]. Mater. Sci. Eng., 2015, A646: 263 | [64] | Calonne V, Gourgues A F, Pineau A.Fatigue crack propagation in cast duplex stainless steels: thermal ageing and microstructural effects[J]. Fatigue Fract. Eng. Mater. Struct., 2004, 27: 31 | [65] | Yao Y H, Wei J F, Wang Z P.Effect of long-term thermal aging on the mechanical properties of casting duplex stainless steels[J]. Mater. Sci. Eng., 2012, A551: 116 | [66] | Alexander D J, Alexander K B, Miller M K, et al.The effect of aging at 343°C on the mechanical properties and microstructure of type 308 stainless steel weldments [A]. Proceeding of the 1st International Conference on Microstructures and Mechanical Properties of Aging Materials[C]. Warrendale: Minrals, Metals and Materials Society, 1992: 263 | [67] | Wang Y Q, Yang B, Han J, et al.Localized corrosion of thermally aged cast duplex stainless steel for primary coolant pipes of nuclear power plant[J]. Procedia Eng., 2012, 36: 88 | [68] | Kuri S E, May J E, Moreno J R S. Induced susceptibility to pitting corrosion in duplex stainless steel due to long aging at low temperatures[J]. Mater. Corros., 2001, 52: 785 | [69] | Kim J H, Ballinger R G.Stress corrosion cracking crack growth behavior of type 316L stainless steel weld metals in boiling water reactor environments[J]. Corrosion, 2008, 64: 645 | [70] | Li S L, Wang Y L, Wang H, et al.Effects of long-term thermal aging on the stress corrosion cracking behavior of cast austenitic stainless steels in simulated PWR primary water[J]. J. Nucl. Mater., 2016, 469: 262 | [71] | Lai C L, Lu W F, Huang J Y.Effect of δ-ferrite content on the stress corrosion cracking behavior of cast austenitic stainless steel in high-temperature water environment[J]. Corrosion, 2014, 70: 591 | [72] | Pareige C, Novy S, Saillet S, et al.Study of phase transformation and mechanical properties evolution of duplex stainless steels after long term thermal ageing (>20 years)[J]. J. Nucl. Mater., 2011, 411: 90 | [73] | González J J, Gutiérrez-Solana F, Sánchez L, et al.Low-temperature aging kinetics in cast duplex stainless steels: Experimental characterization[J]. J. Test. Eval., 1997, 25: 154 | [74] | Slama G, Petrequin P, Mager T.Effect of aging on mechanical properties of austenitic stainless steel castings and welds [A]. SMiRT Post Conference Seminar 6-Assuring Structural Integrity of Steel Reactor Pressure Boundary Components[C]. Monterey, 1983: 29 | [75] | Miller M K, Hyde J M, Cerezo A, et al. Comparison of low temperature decomposition in Fe-Cr and duplex stainless steels [J]. Appl. Surf. Sci., 1995, 87/88: 323 | [76] | Nakano K, Kanao M, Hoshino A.Effects of Ni content and austenite phase on low temperature toughness and embrittlement behaviour of Fe-26% Cr alloys[J]. Tetsu Hag., 1976, 62: 1219 | [77] | Jeon J Y, Kim Y J, Lee M Y, et al.A method to quantify thermal aging effects on fracture toughness of cast stainless steels (CSSs)[J]. Procedia Mater. Sci., 2014, 3: 997 | [78] | Park J S, Yoon Y K.Evaluation of thermal aging embrittlement of duplex stainless steels by electrochemical method[J]. Scripta Metall. Mater., 1995, 32: 1163 | [79] | ?íhal V, Lasek S, Blahetová M, et al.Trends in the electrochemical polarization potentiodynamic reactivation method-EPR[J]. Chem. Biochem. Eng. Quart., 2007, 21: 47 | [80] | ?íhal V, ?tefec R, Shoji T, et al. Electrochemical potentiodynamic reactivation: development and applications of the EPR test [J]. Key Eng. Mater., 2004, 261-263: 855 | [81] | Aydo?du G H, Aydinol M K.Determination of susceptibility to intergranular corrosion and electrochemical reactivation behaviour of AISI 316L type stainless steel[J]. Corros. Sci., 2006, 48: 3565 | [82] | Yi Y S, Tomobe T, Watanabe Y, et al.Nondestructive evaluation of thermal aging embrittlement of duplex stainless steels [A]. Proceedings of the 6th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors[C]. Warrendale: Minerals, Metals and Materials Society, 1993: 409 | [83] | Yi Y S, Shoji T.Quantitative evaluation of material degradation of thermally aged duplex stainless steels using chemical immersion test[J]. J. Nucl. Mater., 1996, 240: 62 | [84] | Fujioka T, Kashima K.A sensitivity study in probabilistic fracture mechanics analysis of light water reactor carbon steel pipe[J]. Int. J. Pres. Ves. Pip., 1992, 52: 403 | [85] | Lee S M, Chang Y S, Choi J B, et al.Failure probability assessment of wall-thinned nuclear pipes using probabilistic fracture mechanics[J]. Nucl. Eng. Des., 2006, 236: 350 | [86] | Li S X, Zhang H L, Li S L, et al.Probabilistic fracture mechanics analysis of thermally aged nuclear piping in a pressurized water reactor[J]. Nucl. Eng. Des., 2013, 265: 611 | [87] | Jaske C E, Shah V N.Life assessment procedure for LWR cast stainless steel components [A]. Proceedings of the 4th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors[C]. South Creek Drive: National Association of Corrosion Engineers, 1990: 66 | [88] | Jaske C E, Shah V N, Weidenhamer G H.Life assessment procedures for major LWR (light water reactor) components: cast stainless steel components [R]. Idaho Falls: Idaho National Engineering Laboratory, 1990 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|