Please wait a minute...
中国腐蚀与防护学报  2015, Vol. 35 Issue (5): 429-437    DOI: 10.11902/1005.4537.2014.183
  本期目录 | 过刊浏览 |
碳钢表面Al-Zn-Si-RE多元合金涂层在3.5%NaCl溶液中的腐蚀行为
蒋穹1,2,缪强2(),梁文萍2,刘志梅2,王珂2,姚正军2,魏小昕3
2. 南京航空航天大学材料科学与技术学院 南京 211106
3. 江苏省麟龙新材料股份有限公司 无锡 214183
Corrosion Behavior of Al-Zn-Si-RE Alloy Powder Containing Water-borne Coating on Carbon Steel in 3.5%NaCl Solution
Qiong JIANG1,2,Qiang MIAO2(),Wenping LIANG2,Zhimei LIU2,Ke WANG2,Zhengjun YAO2,Xiaoxin WEI3
1. School of Materials Engineering, Yancheng Insitute of Technology, Yancheng 224051, China
2. College of Material Science & Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
3. Jiangsu Linlong New Materials Co., Ltd., Wuxi 214183, China
全文: PDF(4615 KB)   HTML
  
摘要: 

采用SEM和EDS等手段考察在微观尺度下Al-Zn-Si-RE涂层的结构和成分均匀性,采用动电位极化曲线和电化学阻抗谱研究了Al-Zn-Si-RE涂层在3.5%NaCl溶液中的腐蚀行为。结果表明,Al-Zn-Si-RE涂层具有典型的片层结构,显著增加了腐蚀介质到达基体的路径,涂层在微观尺度下成分分布均匀,可充分发挥高铝涂层耐蚀性;Al-Zn-Si-RE涂层的腐蚀过程分为4个阶段:浸泡初期涂层表面金属粉的活化腐蚀;第二阶段腐蚀产物在金属粉表面覆盖,显著降低金属粉的溶解速度;第三阶段腐蚀介质渗透到涂层与基体界面,锌铝粉短暂的牺牲阳极保护作用;腐蚀后期,涂层的耐蚀机理主要为腐蚀产物的物理屏蔽作用。腐蚀过程中,涂层的防护机制表现为牺牲阳极的阴极保护和腐蚀产物的屏蔽效应综合作用。

关键词 Al-Zn-Si-RE涂层成分均匀性极化曲线电化学阻抗谱腐蚀行为    
Abstract

The microstructure and corrosion performance in 3.5%NaCl solution of an Al-Zn-Si-RE containing water-borne coating were investigated by means of SEM with EDS as well as potentiodynamic polarization curves and electrochemical EIS. The results indicate that Al-Zn-Si-RE coating shows a typical lamellar structure, which significantly increases the length of diffusion path for corrosive species; and an excellent coating uniformity in micro scale, which may be beneficial to its protectiveness. The corrosion process of Al-Zn-Si-RE coating can be divided into four stages during immersion in 3.5%NaCl solution: I) the active corrosion of Al-Zn-Si-RE flakes on the surface layer; II) the coverage of Al-Zn-Si-RE flakes by the corrosion product layer thereby decreasing their dissolution; III) the temporary sacrificial anode protection of the coating for the steel substrate when the electrolyte reached the interface coating/substrate; IV) the barrier protection caused by corrosion products. Therefore, the protection mechanism of the coating is physical barrier combined with a weak sacrificial anode protection.

Key wordsAl-Zn-Si-RE coating    composition uniformity    polarization plot    electrochemical impedance spectroscopy    corrosion behavior
    
ZTFLH:     
基金资助:江苏省普通高校研究生科研创新计划项目 (CXLXl2_0149),江苏省科技成果转化专项基金项目 (BA2011029) 和江苏省产学研联合创新资金--前瞻性联合研究项目 (BY2011101) 资助

引用本文:

蒋穹, 缪强, 梁文萍, 刘志梅, 王珂, 姚正军, 魏小昕. 碳钢表面Al-Zn-Si-RE多元合金涂层在3.5%NaCl溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2015, 35(5): 429-437.
Qiong JIANG, Qiang MIAO, Wenping LIANG, Zhimei LIU, Ke WANG, Zhengjun YAO, Xiaoxin WEI. Corrosion Behavior of Al-Zn-Si-RE Alloy Powder Containing Water-borne Coating on Carbon Steel in 3.5%NaCl Solution. Journal of Chinese Society for Corrosion and protection, 2015, 35(5): 429-437.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2014.183      或      https://www.jcscp.org/CN/Y2015/V35/I5/429

图1  Al-Zn-Si-RE涂层的截面形貌
图2  Al-Zn-Si-RE涂层表面形貌及其主要元素分布
图3  Al-Zn-Si-RE 涂层、Zn-Al涂层和基体Q235钢在3.5%NaCl溶液中浸泡2 h后的动电位极化曲线
System Ecorr V Icorr μAcm-2 βc Vdec-1 βa Vdec-1
Q235 steel –0.643 28.14 1.0800 0.0808
Zn-Al coating ?1.059 5.594 0.1203 0.0772
Al-Zn-Si-RE coating –0.907 1.025 0.1547 0.2543
表1  Al-Zn-Si-RE 涂层、Zn-Al 涂层和基体Q235 钢在3.5%NaCl溶液中浸泡2 h后的电化学动力学参数
图4  Al-Zn-Si-RE 涂层在3.5%NaCl溶液中浸泡不同时间的EIS谱
图5  Al-Zn-Si-RE涂层在3.5%NaCl溶液中不同腐蚀阶段的电化学阻抗等效电路图
图6  Al-Zn-Si-RE 涂层在3.5%NaCl溶液中浸泡不同时间的阻抗谱拟合结果
图7  浸泡第二阶段金属粉活化溶解电阻Rp和金属粉表面膜层电阻Rf随时间的变化
图8  浸泡第三阶段电荷转移电阻Rct随时间的变化
图9  Al-Zn-Si-RE 涂层在3.5%NaCl溶液中浸泡不同时间的腐蚀形貌
[1] Zhang X M, Liu C M, Wang J J, et al. Research progress on materials to form the chromium-free dacromet film[J]. J. Mater. Metall., 2012, 11(1): 58 (张旭明, 刘春明, 王建军等. 无铬达克罗成膜物质的研究进展[J]. 材料与冶金学报, 2012, 11(1): 58)
[2] Peng T L, Man R L. Rare earth and silane as chromate replacers for corrosion protection on galvanized steel[J]. J. Rare Earths, 2009, 27(1): 159
[3] Shi C X, Zeng P, Li G L, et al. Influence of rare earth salt on the microstructure and corrosion resistance of water-based zinc-aluminum alloy coating[J]. Electroplat. Finish., 2010, 29(6): 51 (石存秀, 曾鹏, 李国亮,等. 稀土盐对水性锌铝合金涂层的微观结构与耐蚀性能的影响[J]. 电镀与涂饰, 2010, 29(6): 51)
[4] Lin A, Zhang X, Fang D J, et al. Study of an environment-friendly insulating coating with high corrosion resistance on electrical steel[J]. Anti-Corros. Methods Mater., 2010, 57(6): 297
[5] Zhu J M, Yao Z J, Jiang Q, et al. Microstructure and corrosion resistance of Cr-free nanocomposite Zn/Al coatings[J]. J. Chin. Soc.Corros. Prot., 2013, 33(5): 425 (朱俊谋, 姚正军, 蒋穹等. 无铬纳米锌铝涂层的微观组织及腐蚀性能[J]. 中国腐蚀与防护学报, 2013, 33(5): 425)
[6] Ma C X. Chromium-free zinc-aluminum coatings and process optimization[D]. Harbin Institute of Technology, 2009 (马春霞. 无铬锌铝涂料及其工艺的优化[D]. 哈尔滨工业大学, 2009)
[7] Jiang D. Preparation and properties of waterborne chromium-free zinc-aluminum coating[D]. Kunming University of Science and Technology, 2009 (姜丹. 水性无铬锌铝涂层的制备与性能研究[D]. 昆明理工大学, 2009)
[8] Vesely D, Kalendova A. Anticorrosion efficiency of ZnxMgyAl2O4 core-shell spinels in organic coatings[J]. Prog. Org. Coat., 2008, 62(1): 5
[9] Cong S H, Hou Q. Corrosion resistance performance of epoxy Zn-Al-Mg-Ce riched alloy coating[J]. China Surf. Eng., 2010, 23(1): 109 (从善海, 侯强. 环氧富Zn-Al-Mg-Ce合金涂层耐腐蚀性能[J]. 中国表面工程, 2010, 23(1): 109)
[10] Xie D M, Feng H, Ma X C. Influence of silane medication on performance of zinc-riched coating[J]. Corros. Sci. Prot. Technol., 2005, 17(4): 237 (谢德明, 冯海, 马晓春. 硅烷偶联剂处理对富锌涂层行为的影响[J]. 腐蚀科学与防护技术, 2005, 17(4): 237)
[11] Liu Z M, Hofmann U, Krenzel V. Anticorrosive zinc flake coatings[J]. Electroplat. Finish., 2011, 30(12): 63 (刘振民, Hofmann U, Krenzel V. 锌薄片抗腐蚀涂层[J]. 电镀与涂饰, 2011, 30(12): 63)
[12] Liu Y, Li H, Li Z. EIS investigation and structural characterization of different hot-dipped zinc-based coatings in 3.5%NaCl solution[J]. Int. J. Electrochem. Sci., 2013, 8: 7753
[13] Zhu Z X, Xu B S, Chen Y X. Effect of Al content on electrochemical corrosion behavior of arc sprayed Zn-Al coatings[J]. China Surf. Eng., 2011, 24(6): 58 (朱子新, 徐滨士, 陈永雄. Al含量对Zn-Al合金涂层电化学腐蚀行为的影响[J]. 中国表面工程, 2011, 24(6): 58)
[14] Li S B, Wang R X, Yao P. Zinc-aluminum alloy wire and the electrochemical properties of the thermal spray coatings[J]. Dev. Appl. Mater., 1998, 6: 18 (李守本, 王瑞雪, 姚平. 锌铝合金丝及其热喷涂涂层的电化学特性[J]. 材料开发与应用, 1998, 6: 18)
[15] Chen W B, Chen P, Chen H Y, et al. Development of Al-containing zinc-rich paints for corrosion resistance[J]. Appl. Surf. Sci., 2002, 187(1/2): 154
[16] Hu H L. Development of chrome-free zinc-aluminum paints and failure mechanism[D]. Harbin Institute of Technology, 2008 (胡会利. 无铬锌铝烧结涂料的研制及耐蚀机理[D]. 哈尔滨工业大学, 2008)
[17] Ma H, Chen L, Chen Y. Effect of aluminum powders on properties of alcohol-soluble inorganic zinc-rich coating[J]. Plat. Finish., 2012, 33(12): 25) (麻慧, 陈玲, 谌岩. 铝粉对醇溶性无机富锌漆性能的影响[J]. 电镀与精饰, 2012, 33(12): 25)
[18] Jiang Q, Miao Q, Yao Z J, et al. Microstructure and corrosion resistance of waterborne Al-Zn-Si alloy coating[J]. J. Chin. Soc. Corros. Prot., 2012, 32(4): 311 (蒋穹, 缪强, 姚正军等. 水性Al-Zn-Si合金涂层微观组织及腐蚀性能研究[J]. 中国腐蚀与防护学报, 2012, 32(4): 311)
[19] Jiang Q, Miao Q, Ding X, et al. Preparation and corrosion resistance of Al-Zn-Si alloy coating[J]. J. Mater. Prot., 2012, 45(8): 51 (蒋穹, 缪强, 丁祥等. Al-Zn-Si合金涂层的制备及其耐蚀性能[J]. 材料保护, 2012, 45(8): 51)
[20] Jiang Q, Miao Q, Tong F, et al. A high anticorrosion nano-particle reinforced multi-component Al-Zn-based alloy coating and its manufacturing methods and application[P]. China, CN103242686A,2013 (蒋穹, 缪强, 仝飞等. 高耐蚀水性锌铝多元合金基纳米防腐涂料及制备法与应用[P]. 中国, CN103242686A, 2013)
[21] Patel N S, Menghani J, Pai K B, et al. Corrosion behavior of Ti2N thin films in various corrosive environments[J]. J. Mater. Environ. Sci., 2010, 1(1): 34
[22] Gil L E, Liscano S, Goudeau P, et al. Effect of TiAlN PVD coatings on corrosion performance of WC-6%Co[J]. Surf. Eng., 2010,26(8): 562
[23] Jia Z J, Ma H Y, Wu X R, et al. Fundamentals of electrochemistry (V)—Electrochemical kinetic and charge-transfer process for electrochemical reaction[J]. Energy Storage Sci. Technol., 2013, 2(4): 402 (贾志军, 马洪运, 吴旭冉等. 电化学基础(V)—电极过程动力学及电荷传递过程[J]. 储能科学与技术, 2013, 2(4): 402)
[24] Zhang W W, Ma A B, Jiang J H, et al. Corrosion behavior of Zn-55%Al coating sprayed on marine steel compared with pure Zn and pure Al coatings[J]. China Surf. Eng., 2011, 24(3): 59 (张舞文, 马爱斌, 江静华等. 海洋工程用钢表面喷涂Zn, Al和Zn-55%Al伪合金涂层的耐蚀性[J]. 中国表面工程, 2011, 24(3): 59)
[25] Liu B, Liu L, Chen Z Y. Effect of micro Mo addition on anticorrosion ability of Cu base bulk metallic glass[J]. Acta Metall. Sin., 2007, 43(1): 82 (刘兵, 柳林, 陈振宇. 添加微量Mo对铜基块体非晶合金耐蚀性的影响[J]. 金属学报, 2007, 43(1): 82
[26] Zhou W J, Xu L K, Wang J, et al. Corrosion electrochemical behavior of Zn-Al silane coating on carbon steel[J]. Acta Metall. Sin., 2007, 43(9): 983 (周文娟, 许立坤, 王佳等. 碳钢表面硅烷锌铝涂层的腐蚀电化学行为[J]. 金属学报, 2007, 43(9): 983)
[27] Zhang W, Wang J, Li Y N, et al. Evaluation of metal corrosion under defective coatings by WBE and EIS technique[J]. Acta Phys. Chim. Sin., 2010, 26(11): 2941 (张伟, 王佳, 李玉楠等. WBE联合EIS技术研究缺陷涂层下金属腐蚀[J]. 物理化学学报, 2010, 26(11): 2941)
[28] Liu J G, Yan C W. Electrochemical characteristics of corrosion behavior of organic/Dacromet composite systems pretreated with gamma-aminopropyltriethoxysilane[J]. Surf. Coat. Technol., 2006,200(16): 4976
[29] Jiang Q, Miao Q, Liang W, et al. Corrosion behavior of arc sprayed Al-Zn-Si-RE coatings on mild steel in 3.5wt%NaCl solution[J]. Electrochim. Acta, 2014, 115: 644
[30] Liu J H, Shao Y W, Meng G Z, et al. Analysis of corrosion process of thin organic coatings using EIS and EN Methods[J]. Paint Coat. Ind., 2008, 38(6): 62) (刘继慧, 邵亚薇, 孟国哲等. 利用电化学阻抗谱和电化学噪声分析薄有机涂层的腐蚀过程[J]. 涂料工业, 2008, 38(6): 62)
[31] Hu J M, Zhang J Q, Cao C N. Determination of water uptake and diffusion of Cl- ion in epoxy primer on aluminum alloys in NaCl solution by electrochemical impedance spectroscopy[J]. Prog. Org. Coat., 2003, 46(4): 273
[32] Wei D F, Chatterjee I, Jones D A. Evaluation of corrosive degradation in coated steel using alternating current impedance spectroscopy[J]. Corrosion, 1995, 51(2): 97
[1] 曹京宜, 杨延格, 方志刚, 寿海明, 李亮, 冯亚菲, 王兴奇, 褚广哲, 赵伊. 淡水舱涂层在不同水环境中的失效行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
[2] 曹京宜, 方志刚, 李亮, 冯亚菲, 王兴奇, 寿海明, 杨延格, 褚广哲, 殷文昌. 国产镀锌钢在不同水环境中的腐蚀行为:I淡水和盐水[J]. 中国腐蚀与防护学报, 2021, 41(2): 169-177.
[3] 曹京宜, 方志刚, 冯亚菲, 李亮, 杨延格, 寿海明, 王兴奇, 臧勃林. 国产镀锌钢在不同水环境中的腐蚀行为:II反渗透水和调质水[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[4] 黄涛, 许春香, 杨丽景, 李福霞, 贾庆功, 宽军, 张正卫, 武晓峰, 王中琪. Zr含量对Mg-3Zn-1Y合金显微组织和腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 219-225.
[5] 李子运, 王贵, 罗思维, 邓培昌, 胡杰珍, 邓俊豪, 徐敬明. 热带海洋大气环境中EH36船板钢早期腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 463-468.
[6] 李琳, 陈义庆, 高鹏, 艾芳芳, 钟彬, 伞宏宇, 杨颖. 除冰盐环境下桥梁钢的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[7] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[8] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[9] 孙硕, 杨杰, 钱薪竹, 常人丽. Ni-Cr-P化学镀层的制备与电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[10] 王新华, 杨永, 陈迎春, 位凯玲. 交流电流对X100管线钢在库尔勒土壤模拟液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[11] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[12] 张尧, 郭晨, 刘妍慧, 郝美娟, 成世明, 程伟丽. 挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[13] 苏小红,胡会娥,孔小东. W颗粒/Zr41.2Ti13.8Cu12.5Ni10Be22.5基非晶复合材料在3%NaCl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[14] 王勤英,裴芮,西宇辰. 镍基激光熔覆层冲刷腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.
[15] 郭铁明,张延文,秦俊山,宋志涛,董建军,杨新龙,南雪丽. 桥梁钢Q345q在3种模拟大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 319-330.