Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (1): 70-74    DOI: 10.11902/1005.4537.2013.119
  研究论文 本期目录 | 过刊浏览 |
Cu,P,Cr和Ni对低碳钢耐蚀性的影响
晁月林 周玉丽 邸全康 王立峰 程四华
首钢技术研究院 北京 100043
Effect of Micro-alloying Elements on Corrosion Resistance of Low Carbon Steels
CHAO Yuelin, ZHOU Yuli, DI Quankang, WANG Lifeng, CHENG Sihua
Shougang Research Institute of Technology, Beijing 100043, China
全文: PDF(3154 KB)   HTML
摘要: 选择Cu-P-Cr-Ni钢、Cu-P-Cr钢和Q235碳钢,在0.01 mol/L的NaHSO3溶液中进行周期浸润、阻抗谱和极化曲线实验,研究了Cu-P-Cr-Ni系合金钢相比Q235碳钢在模拟工业大气 (SO2) 环境下的耐腐蚀性能;利用SEM, EPMA面扫描和XRD分析腐蚀锈层的形貌、组成及Cu,Cr和Ni的元素分布情况。结果表明:Cu-P-Cr-Ni系钢的腐蚀诱发敏感性最低,其次为Cu-P-Cr钢,腐蚀速率分别为Q235碳钢的59.5%和52.8%;锈层分为内、外两层,致密的内锈层明显发生Cu的颗粒状、Cr的团聚状富集,外锈层主要有Cr的富集,Ni富集不明显。Cu和Cr等的富集可形成致密的内锈层,提高低碳钢的耐蚀性。
关键词 耐蚀钢电子探针Cu-P-Cr-Ni周期浸润碳钢    
Abstract:Corrosion behavior of Cu, P, Cr and Ni alloyed low carbon steels and plain carbon steels was examined by means of cyclic immersion corrosion test, electrochemical impedance spectroscopy and polarization curve measurements with 1% (mass fraction) NaHSO3 solution. Corrosion resistance of Cu-P-Cr-Ni low carbon steels and Q235 carbon steel was also examined in SO2 atmosphere. Corrosion rust layers were analyses by SEM, EPMA and XRD. The results show that Cu-P-Cr-Ni steels exhibit weaker pitting susceptibility and lower pit propagation rate than carbon steel. The cyclic immersion corrosion rates were 59.5% and 52.8% of that of Q235 carbon steel for Cu-P-Cr-Ni and Cu-P-Cr steels respectively. Corrosion rust can be differentiated into inner layer and outer layer. Cu and Cr were concentrated in the inner layer and Cr enriched in the outer layer. The enrichment of Ni was not obvious. Thereby the corrosion resistance of low carbon steels was enhanced by the Cu and Cr-alloying.
Key wordscorrosion resistant steel    EPMA    Cu-P-Cr-Ni    cyclic immersion corrosion test    carbon steel
收稿日期: 2013-06-06     
ZTFLH:  TG174.2  
通讯作者: 晁月林,E-mail:chaogai813@126.com   
作者简介: 晁月林,男,1984年生,研究方向为耐蚀钢筋与高强钢筋的研发

引用本文:

晁月林, 周玉丽, 邸全康, 王立峰, 程四华. Cu,P,Cr和Ni对低碳钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2014, 34(1): 70-74.
CHAO Yuelin, ZHOU Yuli, DI Quankang, WANG Lifeng, CHENG Sihua. Effect of Micro-alloying Elements on Corrosion Resistance of Low Carbon Steels. Journal of Chinese Society for Corrosion and protection, 2014, 34(1): 70-74.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2013.119      或      https://www.jcscp.org/CN/Y2014/V34/I1/70

[1] Ver R, Rosales B M, Tapia C. Effect of the exposure angle in the corrosion rate of plain carbon steel in a marine atmosphere [J]. Corros. Sci., 2003, 45(2): 321-337
[2] Cox A, Lyon S B. An electrochemical study of the atmospheric corrosion of mild steel-I. experimental method [J]. Corros. Sci., 1994, 36(7): 1167-1176
[3] Wang Z Y, Zheng Y P, Liu S R. Behavior of atmospheric corrosion of carbon steel in artificially polluted media [J]. J. Chin. Soc. Corros. Prot., 1994, 14(3): 240-246
(王振尧, 郑逸苹, 刘寿荣. Q235钢在人造污染介质中的大气腐蚀行为 [J]. 中国腐蚀与防护学报, 1994, 14(3): 240-246)
[4] An B G, Zhang X Y, Han E H, et al. The behavior of corrosion and runoff of A3 steel in artificial rainwater [J]. Acta Metall. Sin., 2002, 28(7): 755-759
(安柏刚, 张学元, 韩恩厚等. A3钢在模拟降雨环境下的腐蚀和冲刷行为研究 [J]. 金属学报, 2002, 38(7): 755-759)
[5] Bai X D. Corrosion and Control of Materials [M]. Beijing: Tsinghua University Press, 2005: 17-28
(白新德. 材料的腐蚀与控制 [M]. 北京: 清华大学出版社, 2005: 17-28)
[6] Zuo Y, Xiong J P. Engineering Material and Its Corrosion Resistance[M]. Beijing: China Petrochemical Press, 2013
(左禹, 熊金平. 工程材料及其耐蚀性 [M]. 北京: 中国石化出版社, 2013)
[7] Yu J D, Wu Y L, Cui X L, et al. Mechanism of atmospheric corrosion resistance of 08CuPVRE steel [J]. J. Chin. Soc. Corros. Prot., 1994, 14(1): 82-86
(于敬敦, 吴幼林, 崔秀玲等. 08CuPVRE钢耐蚀钢腐蚀机理 [J]. 中国腐蚀与防护学报, 1994, 14(1): 82-86)
[8] Jia Z, Dai C S, Chen L. Electrochemical Measuring Method [M]. Beijing: Chemical Industry Press, 2006
(贾铮, 戴长松, 陈玲. 电化学测量方法 [M]. 北京: 化学工业出版社, 2006)
[9] Yang W, Gu R X. Localized Corrosion of Metal [M]. Beijing: Chemical Industry Press, 1995
(杨武, 顾瑞祥. 金属的局部腐蚀 [M]. 北京: 化学工业出版社, 1995)
[10] Huang G Q. Effect of chromium element on corrosion resistance of steels in seawater [J]. Corros. Sci. Prot. Technol., 2002, 12(2): 86-89
(黄桂桥. Cr对钢耐海水腐蚀性的影响 [J]. 腐蚀科学与防护技术, 2002, 12(2): 86-89)
[11] Li Q X, Wang Z Y, Han W, et al. Review of atmospheric corrosion of weathering and carbon steels [J]. J. Chin. Soc. Corros. Prot., 2009, 29(5): 394-400
(李巧霞, 王振尧, 韩薇等. 碳钢和耐候钢的大气腐蚀 [J]. 中国腐蚀与防护学报, 2009, 29(5): 394-400)
[12] Cao G L, Li G M, Chen S, et al. Mechanism on pitting corrosion resistance of Ni-Cu-P steels [J]. Mater. Eng., 2010, (8): 38-43
(曹国良, 李国明, 陈珊等. Ni-Cu-P钢耐点蚀性能的机理研究 [J]. 材料工程, 2010, (8): 38-43)
[13] Huang J Z, Zuo Y. The Corrosion Resistance and the Corrosion Data of Materials [M]. Beijing: Chemical Industry Press, 2003
(黄健中, 左禹. 材料的耐蚀性和腐蚀数据 [M]. 北京: 化学工业出版社, 2003)
[14] Yan J, Xiong C Q. A study of the atmospheric corrosion behavior of low alloy steels containing copper [J]. J. Chin. Soc. Corros. Prot., 1986, 6(1): 1-14
(严谨, 熊长清. 含铜低合金钢耐大气腐蚀性能研究—十五年大气曝露试验总结 [J]. 中国腐蚀与防护学报, 1986, 6(1): 1-14
[15] Graedel T E, Frankenthal R P. Corrosion mechanisms for iron and low alloy steels exposed to theatmosphere [J]. J. Electrochem. Soc., 1990, 137(8): 2385-2394
[16] Yamashita M, Asami K, Ishikawa T, et al. Characterization of rust layer on weathering steel exposed to the atmosphere for 17 years[J]. ZairyoKankyo, 2001, 50(11): 521-530
[17] Leygraf C, Graedel T E, translated by Han E-H, et al. Atmospheric Corrosion [M]. Beijing: Chemical Industry Press, 2005: 225-228
(Leygraf C, Graedel T E著, 韩恩厚等译. 大气腐蚀 [M]. 北京: 化学工业出版社, 2005: 225-228)
[1] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[2] 张天翼,柳伟,范玥铭,李世民,董宝军,BANTHUKUL Wongpat,CHOWWANONTHAPUNYA Thee. 海洋大气环境Cu/Ni协同作用对低合金钢耐蚀性影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 511-518.
[3] 许萍,张硕,司帅,张雅君,汪长征. EPS的主要成分-蛋白质、多糖抑制碳钢腐蚀机理研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 176-184.
[4] 刘明,程学群,李晓刚,卢天健. 低合金钢筋在水泥萃取液中钝化膜的耐蚀机理研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 558-564.
[5] 钟显康,扈俊颖. 恒定的pH值和Fe2+浓度下X65碳钢的CO2腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(6): 573-578.
[6] 王力, 郭春云, 肖葵, 吐尔逊·斯拉依丁, 董超芳, 李晓刚. Q235和Q450钢在吐鲁番干热大气环境中长周期暴晒时的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.
[7] 乔越, 朱志平, 杨磊, 刘志峰. 高温状态下锅炉给水氧化还原电位监测与模拟实验研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 487-494.
[8] 彭晚军, 丁纪恒, 陈浩, 余海斌. 生物基缓蚀剂糠醇缩水甘油醚的缓蚀性能及机理[J]. 中国腐蚀与防护学报, 2018, 38(3): 303-308.
[9] 钱备, 刘成宝, 宋祖伟, 任俊锋. 纳米容器改性环氧涂层对Q235碳钢的防腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 133-139.
[10] 张杰, 胡秀华, 郑传波, 段继周, 侯保荣. 海洋微藻环境中钙质层对Q235碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[11] 偶国富, 赵露露, 王凯, 王宽心, 金浩哲. 10#碳钢在HCl-H2O环境中的露点腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 33-38.
[12] 孟晓波,蒋武斌,廖永力,李锐海,郑志军,高岩. 输电杆塔材料在模拟工业环境中的大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 460-466.
[13] 孙霜青,郑弃非,李春玲,王秀民,胡松青. 腐蚀产物对纯Al 8A06长期大气腐蚀行为影响的研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 110-116.
[14] 程庆利,陶彬,刘栓,刘全桢,张卫华,田松柏,王立平. 原油沉积水对Q235B碳钢的腐蚀影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 126-134.
[15] 郝永胜,Luqman Abdullahi SANI,宋立新,徐国宝,葛铁军,方庆红. 中性和酸性溶液中Q235碳钢表面沉积植酸转化膜的耐蚀行为研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 549-558.