Please wait a minute...
中国腐蚀与防护学报  2015, Vol. 35 Issue (6): 496-504    DOI: 10.11902.1005.4537.2014.157
  研究报告 本期目录 | 过刊浏览 |
CO2饱和盐水溶液中咪唑啉季铵盐与3种阴离子表面活性剂之间的缓蚀协同效应
张晨1,赵景茂1,2()
1. 北京化工大学材料科学与工程学院 北京 100029
2. 北京化工大学 材料电化学过程与技术北京市重点实验室 北京 100029
Synergistic Inhibition Effect of Imidazoline Ammonium Salt and Three Anionic Surfactants in CO2-saturatedBrine Solution
Chen ZHANG1,Jingmao ZHAO1,2()
1. College of Material Science and Engineering,Beijing University of Chemical Technology, Beijing 100029, China
2. Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
全文: PDF(1090 KB)   HTML
摘要: 

采用失重法、动电位极化曲线、分子模拟研究了CO2饱和的3.5%NaCl溶液中,咪唑啉季铵盐 (IAS) 与3种阴离子表面活性剂对Q235钢的缓蚀协同效应。结果表明:IAS与十二烷基磺酸钠 (SDSH) 之间具有较好的缓蚀协同效应,且当二者以1:1的浓度比例复配时,协同效应最明显;IAS与十二烷基苯磺酸钠 (SDBS) 之间同样存在协同效应,但协同效果不显著;而IAS与十二烷基硫酸钠 (SDSL) 之间则存在明显的拮抗效应。3种阴离子表面活性剂对Q235钢均具有一定的缓蚀作用。并利用分子模拟,推测出影响IAS与3种阴离子表面活性剂间的缓蚀协同效应程度的因素。

关键词 CO2腐蚀吸附协同效应拮抗效应分子模拟    
Abstract

: The synergistic inhibition effect of imidazoline ammonium salt (IAS) and three anionic surfactants on corrosion of Q235 carbon steel in CO2 saturated brine solution was studied by using mass loss method, potentiodynamic polarization measurements and molecular dynamics (MD) simulation. It is found that in CO2 saturated brine solution, there exists a good synergistic inhibition effect between IAS and sodium dodecyl sulfonate (SDSH), and the most significant synergistic inhibition with an inhibition efficiency of 88.5% occurs when the concentration ratio of them is 1:1. The synergism also occurs when using IAS together with sodium dodecyl benzene sulfonate (SDBS). However the antagonism occurs between IAS and sodium dodecyl sulfate (SDSL). Good corrosion inhibition on Q235 carbon steel is also found when only one of the three anionic surfactants is used. The factors affecting the synergism between IAS and the three surfactants were conjectured using molecular simulation.

Key wordsCO2 corrosion    adsorption    synergism    antagonism    molecular simulation
    
基金资助:国家自然科学基金项目 (51171013) 资助

引用本文:

张晨,赵景茂. CO2饱和盐水溶液中咪唑啉季铵盐与3种阴离子表面活性剂之间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2015, 35(6): 496-504.
Chen ZHANG, Jingmao ZHAO. Synergistic Inhibition Effect of Imidazoline Ammonium Salt and Three Anionic Surfactants in CO2-saturatedBrine Solution. Journal of Chinese Society for Corrosion and protection, 2015, 35(6): 496-504.

链接本文:

https://www.jcscp.org/CN/10.11902.1005.4537.2014.157      或      https://www.jcscp.org/CN/Y2015/V35/I6/496

图1  IAS与3种阴离子表面活性剂的分子结构式
图2  3种模型示意图
图3  CO2饱和3.5%NaCl溶液中添加不同浓度缓蚀剂后测得的η及S值曲线
图4  Q235钢在添加不同浓度缓蚀剂的CO2饱和3.5%NaCl溶液中的极化曲线
Inhibitor / mg·L-1 βa / mV βc / mV Ecorr / vs SCE mV Icorr / mA·cm-2 η / %
--- 52.81 264.81 -699.44 0.0458 ---
IAS 50 58.83 174.96 -665.22 0.0179 60.9
IAS 100 60.20 163.45 -629.47 0.0103 77.5
SDSH 50 59.57 168.76 -620.54 0.0250 45.5
SDSH 100 70.34 117.70 -671.22 0.0077 83.2
IAS 50+SDSH 50 61.46 155.20 -634.75 0.0067 85.5
IAS 50+SDSH 100 72.86 111.25 -644.57 0.0043 90.6
SDBS 50 63.11 145.60 -694.60 0.0262 42.8
SDBS 100 51.45 305.05 -629.15 0.0196 57.2
IAS 50+SDBS 50 66.58 129.97 -665.09 0.0099 78.4
IAS 50+SDBS 100 56.46 199.99 -655.37 0.0128 72.1
SDSL 50 66.00 132.25 -720.79 0.0208 54.6
SDSL 100 78.75 99.85 -705.87 0.0230 49.8
IAS 50+SDSL 50 32.37 122.32 -612.79 0.0135 70.5
IAS 50+SDSL 100 42.91 157.85 -646.08 0.0122 73.4
表1  Q235钢在添加不同浓度缓蚀剂的CO2饱和3.5%NaCl溶液中的电化学参数
图5  表面活性剂分子的前线轨道HOMO及LUMO分布图
Surfactantmolecule EHOMOeV ELUMOeV E (ELUMO-EHOMO)eV
SDSH -1.699 3.428 5.127
SDBS -2.088 2.985 5.073
SDSL -2.206 3.442 5.648
表2  表面活性剂分子的EHOMO,ELUMO及△E
Surfactant molecule H2O / r =0.1365 nm H3O+ / r =0.1405 nm Cl- / r =0.1725 nm HCO3- / r =0.1835 nm
SDSH 3.26 2.83 0.80 0.49
SDBS 3.70 3.27 1.09 0.72
SDSL 2.72 2.35 0.74 0.48
表3  不同体系的FFV值
图6  单个IAS与6个阴离子表面活性剂在Fe (001) 表面的平衡吸附构型
图7  Fe (001) 表面水分子浓度分布曲线
[1] Zhao J M, Shang H S, Wang S D.Synthesis of an imidazoline quaternary ammonium salt and its corrosion inhibition in CO2 corrosive systems[J]. J. Beijing Univ. Chem. Technol.(Nat. Sci.), 2012, 39(5): 37
[1] (赵景茂, 尚洪帅, 王帅东. 咪唑啉季铵盐的合成及其在CO2腐蚀环境中的缓蚀性能[J]. 北京化工大学学报 (自然科学版), 2012, 39(5): 37)
[2] Lv Z P, Zheng J S, Peng F M.Reducing the used concentration of CO2 corrosion inhibitor by synergistic effect[J]. Corros. Prot., 1999,20(9): 395
[2] (吕战鹏, 郑家燊, 彭芳明. 利用缓蚀协同效应降低二氧化碳缓蚀剂使用浓度[J]. 腐蚀与防护, 1999, 20(9): 395)
[3] Okafor P C, Liu C B, Liu X, et al.Corrosion inhibition and adsorption behavior of imidazoline salt on N80 carbon steel in CO2-saturated solutions and its synergism with thiourea[J]. Solid State Electrochem., 2010, 14(8): 1367
[4] Zhao J M, Liu H X, Di W, et al.The inhibition synergistic effect between imidazoline derivative and thiourea[J]. Electrochemistry, 2004, 10(4): 440
[4] (赵景茂, 刘鹤霞, 狄伟等. 咪唑啉衍生物与硫脲之间的缓蚀协同效应研究[J]. 电化学, 2004, 10(4): 440)
[5] Zhao J M, Chen G H.Synergistic inhibition mechanism of imidazoline and thiourea in CO2 corrosive system[J]. J. Chin. Soc. Corros. Prot., 2013, 33(3): 226
[5] (赵景茂, 陈国浩. 咪唑啉与硫脲在CO2腐蚀体系中的缓蚀协同作用机理[J]. 中国腐蚀与防护学报, 2013, 33(3): 226)
[6] Deng S D, Li X H, Bai W, et al.Synergistic effect on inhibition by surfactants for steel in hydrochloric acid solution[J]. Cleaning World, 2007, 23(7): 1
[6] (邓书端, 李向红, 白玮等. 表面活性剂在HCl中对钢的缓蚀协同效应[J]. 清洗世界, 2007, 23(7), 1)
[7] Yuan L B, Liu X X, Zhao Q R, et al.The synergistic effect of inhibition corrosion of different surfactant for steel in hydrochloric acid solution[J]. J. Yunnan Normal Univ., 2003, 23(6): 58
[7] (袁朗白, 刘晓轩, 赵黔榕等. 不同表面活性剂在盐酸介质中对钢的缓蚀协同效应[J]. 云南师范大学学报, 2003, 23(6): 58)
[8] An Y, Xu Q.The inhibition for pitting corrosion of stainless steel in simulated circulating cooling water by SDS[J]. Plat. Finish., 2012, 34(3): 10
[8] (安洋, 徐强. 十二烷基硫酸钠对不锈钢在循环冷却水中的缓蚀作用[J]. 电镀与精饰, 2012, 34(3): 10)
[9] Xu X M, Ge H H, Wu J N, et al.Corrosion inhibition of sodium dodecyl benzene sulfonate to stainless steel[J]. Corros. Prot., 2012, 33(9): 740
[9] (徐学敏, 葛红花, 吴佳妮等. 模拟水中十二烷基苯磺酸钠对不锈钢的缓蚀作用[J]. 腐蚀与防护, 2012, 33(9): 740)
[10] Zhao J M, Li J.Gemini surfactants containing hydroxyl group as corrosion inhibitors for Q235 steel in brine solution saturated by CO2[J]. J. Chin. Soc. Corros. Prot., 2012, 32(4): 349
[10] (赵景茂, 李俊. 含羟基双子表面活性剂在CO2饱和盐水溶液中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2012, 32(4):349)
[11] Zhao J M, Chen G H.The synergistic inhibition effect of oleic-based imidazoline and sodium benzoate on mild steel corrosion in a CO2-saturated brine solution[J]. Electrochim. Acta, 2012, 69: 247
[12] Zhang C, Zhao J M.Synergistic inhibition effect of imidazoline ammonium salt and sodium dodecyl sulfate in CO2 system[J]. Acta Phys.-Chim. Sin., 2014, 30(4): 677
[12] (张晨, 赵景茂. CO2体系中咪唑啉季铵盐与十二烷基磺酸钠之间的缓蚀协同效应[J]. 物理化学学报, 2014, 30(4): 677)
[13] Zhang J, Zhao W M, Guo W Y, et al.Theoretical evaluation of corrosion inhibition performance of benzimidazole corrosion inhibitors[J]. Acta Phys.-Chim. Sin., 2008, 24(7): 1239
[13] (张军, 赵卫民, 郭文跃等. 苯并咪唑类缓蚀剂缓蚀性能的理论评价[J]. 物理化学学报, 2008, 24(7): 1239)
[14] Hu S Q, Hu J C, Shi X, et al.QSAR and molecular design of imidazoline derivatives as corrosion inhibitors[J]. Acta Phys.-Chim. Sin., 2009, 25(12): 2524
[14] (胡松青, 胡建春, 石鑫等. 咪唑啉衍生物缓蚀剂的定量构效关系及分子设计[J]. 物理化学学报, 2009, 25(12): 2524)
[15] Musa A Y, Jalgham R T T, Mohamad A B. Molecular dynamic and quantum chemical calculations for phthalazine derivatives as corrosion inhibitors of mild steel in 1M HCl[J]. Corros. Sci., 2012, 56: 176
[16] Wang D, Xiang B, Liang Y, et al.Corrosion control of copper in 3.5wt.%NaCl solution by domperidone: Experimental and theoretical study[J]. Corros. Sci., 2014, 85: 77
[17] Yan Y, Wang X, Zhang Y, et al.Molecular dynamics simulation of corrosive species diffusion in imidazoline inhibitor films with different alkyl chain length[J]. Corros. Sci., 2013, 73: 123
[18] Chen G H.Study of the inhibition mechanism and synergistic effect of corrosion inhibitors in sweet system [D]. Beijing: Beijing University of Chemical Technology, 2012
[18] (陈国浩. 二氧化碳腐蚀体系缓蚀剂的缓蚀机理及缓蚀协同效应研究 [D]. 北京: 北京化工大学, 2012)
[19] Wei B M.Metal Corrosion Theory and Application [M]. Beijing: Chemical Industry Press, 1991: 272
[19] (魏宝明. 金属腐蚀理论及应用 [M]. 北京: 化学工业出版社, 1991: 272)
[20] Tavakoli H, Shahrabi T, Hosseini M.Synergistic effect on corrosion inhibition of copper by sodium dodecyl benzenesulphonate (SDBS) and 2-mercaptobenzoxazole[J]. Mater. Chem. Phys., 2008,109: 281
[21] Yang P, Gao X H.Chemical Bonding and Structure-property Relations [M]. Beijing: Higher Education Press, 1987
[21] (杨频, 高孝恢. 性能-结构-化学键 [M]. 北京: 高等教育出版社, 1987)
[22] Bondi A.Van der Waals volumes and radii[J]. J. Phys. Chem., 1964, 68(3): 441
[23] Pan F, Peng F, Jiang Z.Diffusion behavior of benzene/cyclohexane molecules in poly (vinyl alcohol)-graphite hybrid membranes by molecular dynamics simulation[J]. Chem. Eng. Sci., 2007, 62(3): 703
[1] 卢爽, 任正博, 谢锦印, 刘琳. 2-氨基苯并噻唑与苯并三氮唑复配体系对Cu的缓蚀性能[J]. 中国腐蚀与防护学报, 2020, 40(6): 577-584.
[2] 李向红, 邓书端, 徐昕. 木薯淀粉三元接枝共聚物对钢在H2SO4溶液中的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 105-114.
[3] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[4] 刘峥, 李海莹, 王浩, 赵永, 谢思维, 张淑芬. 分子动力学模拟水溶液中席夫碱基表面活性剂在Zn表面的吸附行为[J]. 中国腐蚀与防护学报, 2018, 38(4): 381-390.
[5] 彭晚军, 丁纪恒, 陈浩, 余海斌. 生物基缓蚀剂糠醇缩水甘油醚的缓蚀性能及机理[J]. 中国腐蚀与防护学报, 2018, 38(3): 303-308.
[6] 张天翼,吴俊升,郭海龙,李晓刚. 模拟海水中HSO3-对2205双相不锈钢钝化膜成分及耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(6): 535-542.
[7] 左翔,蒋裕丰,迟挺,胡鑫,曹冬梅,蔡烽. 新型含长链烷基苯并三唑缓蚀剂的制备与性能研究[J]. 中国腐蚀与防护学报, 2016, 36(5): 415-420.
[8] 王春霞,陈敬平,张晓红,王赪胤. 溴化N-辛烷异喹啉在盐酸溶液中对Q235碳钢的缓蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(3): 245-252.
[9] 肖涛,Masoumeh Moradi,宋振纶,杨丽景,闫涛,侯利锋. 新喀里多尼亚弧菌胞外聚合物对硫酸中Q235碳钢的缓蚀作用[J]. 中国腐蚀与防护学报, 2016, 36(2): 150-156.
[10] 闫涛,宋振纶,杨丽景,肖涛,侯利锋. 新喀里多尼亚弧菌对Cu在人工海水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(2): 157-164.
[11] 冯丽娟,赵康文,杨怀玉,唐囡,王福会,上官帖. 混凝土模拟液中咪唑啉衍生物与四乙烯五胺间缓蚀协同效应[J]. 中国腐蚀与防护学报, 2015, 35(4): 297-304.
[12] 赵桐, 赵景茂, 姜瑞景. 流速和碳链长度对咪唑啉衍生物在高压CO2环境中缓蚀性能的影响[J]. 中国腐蚀与防护学报, 2015, 35(2): 163-168.
[13] 谢斌, 朱莎莎, 李玉龙, 赖川, 林肖, 邹立科, 何林芯, 陈能. O,O '-二(2-苯乙基) 二硫代磷酸二乙铵在HCl溶液中对Q235钢的缓蚀性研究[J]. 中国腐蚀与防护学报, 2014, 34(4): 366-374.
[14] 曾慧晶, 李光勇, 吴欢, 高立新, 张大全. 磷酸三乙酯与稀土铈 (IV) 离子在盐酸溶液中对Cu的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2014, 34(3): 271-276.
[15] 冯丽娟, 赵康文, 唐囡, 杨怀玉, 王福会, 上官帖. 含氧有机物与十二烷基苯磺酸钠复配物在3.5%NaCl饱和Ca(OH)2溶液中对钢筋的缓蚀与协同效应[J]. 中国腐蚀与防护学报, 2013, 33(6): 441-448.