Please wait a minute...
中国腐蚀与防护学报  2007, Vol. 27 Issue (1): 17-22     
  研究报告 本期目录 | 过刊浏览 |
AZ91D镁合金表面无铬转化膜的研究
赵明; 吴树森; 安萍; 罗吉荣
华中科技大学
INVESTIGATION ON CHROMIUM-FREE CONVERSIONCOATING ON AZ91D MAGNESIUM ALLOY
;;;
华中科技大学
全文: PDF(1747 KB)  
摘要: 研究出一种新的镁合金表面转化处理方法.其处理液由磷酸、硝酸盐、加速剂及成膜剂组成.原子力微镜(AFM)对这种转化膜的形貌观察表明,膜的表面光滑而有波浪起伏.用能谱仪(EDX)和X射线衍射谱(XRD)研究该膜结构和组成.EDX试验结果证明转化膜主要由Mg、 Al、Mn、P、Ca、O、K、Zn等元素组成.X射线衍射谱表明转化膜由非晶态物质与少量Ca0965Mg2Al6O27, Mn5.64P3,ZnAl2O4 和 (Mg0.66Al0.34)(Al0.83Mg0.17)2O4晶态化合物组成.运用电化学阻抗谱(EIS)和极化曲线试验研究了转化膜在NaCl溶液中的腐蚀过程,结果指出,转化膜表面Cl-吸附区的溶解快于非吸附区是转化膜产生点蚀的原因.
关键词 AZ91D镁合金无铬转化膜阻抗谱点蚀    
Abstract:A chromium-free conversion coating treatment whose solution contains phosphate acid、 nitrate compound and accelerator was developed for magnesium alloy.The morphology of conversion was observed using AFM and SEM.The AFM results showed the surface of coating is smooth and slightly wavy.The structure and the composition were analyzed by using EDS and XRD.The EDX results indicated that the compositions of the coating were mainly compounds of Mg,Al,Mn,P,Ca and O.XRD result showed that coating layer contains amorphous materials and a small quantity of Ca0.965Mg2Al6O27,Mn5.64P3,ZnAl2O4 and (Mg0.66Al0.34)(Al0.83Mg0.17)2O4 crystalline compounds.Electrochemical impedance spectroscopy (EIS) and electrochemical polarisation was utilized to study the coating immersion in NaCl slution.The EIS and electrochemical polarisation results demonstrated that the reason for pitting corrosion of conversion coating is that dissolution at the chlorine anion absorbed area is higher than that of non-absorbed area.
Key wordsAZ91D Mg alloys    chromium-free conversion coating    impedance spectroscopy    pitting corrosion
收稿日期: 2005-08-08     
ZTFLH:  TG174.44  
通讯作者: 赵明     E-mail: zhaominghust@163.com

引用本文:

赵明; 吴树森; 安萍; 罗吉荣 . AZ91D镁合金表面无铬转化膜的研究[J]. 中国腐蚀与防护学报, 2007, 27(1): 17-22 .
. INVESTIGATION ON CHROMIUM-FREE CONVERSIONCOATING ON AZ91D MAGNESIUM ALLOY. J Chin Soc Corr Pro, 2007, 27(1): 17-22 .

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2007/V27/I1/17

[1]Rudd A L,Breslin C B,Mansfeld F.The corrosion protection affor-ded by rare earth conversion coatings applied to magnesium[J].Corros.Sci.,2000,42:257-288
[2]Yfantis A,Paloumpa I,Schmei D,et al.Novel corrosion-resistantfilms for Mg alloys[J].Surf.Coat.Tech.,2002,151-152:400-404
[3]Gonzalez-Nunez M A,Nunez-Lopez C A.A non-chromate con-version coating for magnesium alloys and magnesium-based metalmatrix composites[J].Corros.Sci.,1995,37(11):1763-1765
[4]Wu S S,Zhao M,Luo J R,et al.Properties of conversion coating ofmagnesium alloys by a phosphate-permanganate solution[J].Ma-ter.Sci.Forum,2005,488-489:665-667
[5]Cao C N,Zhang J Q.An Introduction to Electrochemical ImpedanceSpectroscopy[M].Beijing:Science Press,2002(曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002)
[6]Coverdale R T,Christensen B J,Jennings H M.Interpretation of im-pedance spectroscopy of cement paste via computer modeling[J].J.Mater.Sci.,1995,30:712-715
[7]Pye E L,Golestaneh K.Equivalent electronic circuits computer gen-erated from alternating-current impedance data[A].ComputerModeling in Corrosion[C].Philadelphia4:ASTM,1992,5-16
[8]Conde A,de Damborenea J J.Electrochemical impedance spectrosco-py for studying the degradation of enamel coating[J].Corros.Sci.,2002,44(11):1555-1567
[9]Udhayan R,Bhatt D P.On the corrosion behaviour of magnesiumandits alloys using electrochmeical techniques[J].J.Power Sources,1996,63:103-107
[10]Darowick K.Corrosion rate measurements by non-linear electro-chemical impedance spectroscopy[J].Corros.Sci.,1995,37(6):913-915
[11]Juzelinas E,Leinartas K,Frbeth W,et al.Study of initial stages ofAl-Mg alloy corrosion in water,chloride and Cu(Ⅱ)environmentby a scanning Kelvin probe[J].Corros.Sci.,2003,45:1939-1941
[12]Song G L,Atrens A,Dargusch M.Influence of microstructure on thecorrosion of diecast AZ91D[J].Corros.Sci.,1999,41:249-273
[1] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[3] 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[4] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[5] 戴明杰, 刘静, 黄峰, 胡骞, 李爽. 基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[6] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[7] 贺三, 孙银娟, 张志浩, 成杰, 邱云鹏, 高超洋. 20#钢在含饱和CO2的离子液体醇胺溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[8] 李清, 张德平, 王薇, 吴伟, 卢琳, 艾池. L80油管钢实际腐蚀状况评估及室内电化学和应力腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[9] 郏义征, 王保杰, 赵明君, 许道奎. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[10] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[11] 何壮,王兴平,刘子涵,盛耀权,米梦芯,陈琳,张岩,李宇春. 316L和HR-2不锈钢在盐酸液膜环境中的钝化与点蚀[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[12] 苏小红,胡会娥,孔小东. W颗粒/Zr41.2Ti13.8Cu12.5Ni10Be22.5基非晶复合材料在3%NaCl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[13] 王标,杜楠,张浩,王帅星,赵晴. 304不锈钢点蚀产物对亚稳态点蚀萌生和稳态蚀孔生长的加速作用[J]. 中国腐蚀与防护学报, 2019, 39(4): 338-344.
[14] 李雨,关蕾,王冠,张波,柯伟. 机械应力对不锈钢点蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(3): 215-226.
[15] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.