Please wait a minute...
中国腐蚀与防护学报  2013, Vol. 33 Issue (3): 235-240    
  本期目录 | 过刊浏览 |
C3H8O3含量对AZ91D镁合金微弧氧化过程及膜层特性的影响
王淑艳1,2 夏永平1 刘 莉1
1. 江苏科技大学材料科学与工程学院 镇江 212003;
2. 江苏科技大学 江苏省先进焊接技术重点实验室 镇江 212003
Influences of C3H8O3 Concentration on Formation and Characteristics of MAO Coatings on AZ91D
Magnesium Alloy
WANG Shuyan1, 2, XIA Yongping1, LIU Li1
1. School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China;
2. Provincial Key Lab of Advanced Welding Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, China
全文: PDF(3140 KB)  
摘要: 在含有不同C3H8O3含量的硅铝复合电解液中,利用交流脉冲电源在AZ91D镁合金基体上制备了一系列微弧氧化膜。利用SEM和膜层测厚仪分别研究了陶瓷膜层的微观形貌特征及厚度,采用全浸泡实验和电化学阻抗谱测试了膜层在3.5%NaCl中性溶液中的耐蚀性能。结果表明,微弧氧化过程中的起弧电压和终止电压均随C3H8O3含量的增加而呈上升的变化趋势。随着C3H8O3含量的增加,膜层耐蚀性先提高后降低,而膜厚变化幅度不大。膜层的耐蚀性主要取决于内部致密层,当C3H8O3含量为5 mL/L时,膜层相对较致密,因而表现出良好的耐蚀性能。
关键词 镁合金微弧氧化C3H8O3耐蚀性能    
Abstract:Microarc oxidation (MAO) coatings were obtained on the AZ91D magnesium alloy by AC pulse electrical source in a silicate-aluminate based composite electrolyte containing various concentrations of C3H8O3. The morphologies and thickness of ceramic coatings were characterized by SEM and layer thickness meter, respectively. The corrosion resistance of coatings in a 3.5%NaCl neutral solution was evaluated by the immersion test and electrochemical impedance spectroscopy (EIS). The results showed that the striking voltage and final voltage increased gradually with the increase of C3H8O3 concentration during the MAO process. With the increase of C3H8O3 concentration in the electrolyte, the corrosion resistance of the coatings increased at first and then decreased gradually, however, the variation of the coating thickness was not obvious. The EIS results showed that the corrosion resistance of the coatings was influenced by the inner dense layer. The coating exhibited better corrosion resistance in the electrolyte containing 5 mL/L C3H8O3 due to its relatively compact microstructure.
Key wordsmagnesium alloy    microarc oxidation    C3H8O3    corrosion resistance
    
ZTFLH:  TG174.4  

引用本文:

王淑艳,夏永平 刘 莉. C3H8O3含量对AZ91D镁合金微弧氧化过程及膜层特性的影响[J]. 中国腐蚀与防护学报, 2013, 33(3): 235-240.
. Influences of C3H8O3 Concentration on Formation and Characteristics of MAO Coatings on AZ91D
Magnesium Alloy. Journal of Chinese Society for Corrosion and protection, 2013, 33(3): 235-240.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2013/V33/I3/235

[1] Zhong H, Liu P Y, Zhou T T. Applications and prospects of magnesium and its alloys in aerospace [J]. Aviat. Eng. Maint., 2002, (4): 41-42
(钟皓, 刘培英, 周铁涛. 镁及镁合金在航空航天中的应用及前景 [J]. 航空工程与维修, 2002, (4): 41-42)
[2] Zi B T, Wang H. Magnesium alloy and its applications in industry [J]. Chin. J. Rare Met., 2004, 28(1): 229-232
(訾炳涛, 王辉. 镁合金及其在工业中的应用 [J]. 稀有金属, 2004, 28(1): 229-232)
[3] Caton P D. Magnesium-an old material with new applications [J]. Mater. Des., 1991, 12(6): 309-316
[4] Gray J E, Luan B. Protective coatings on magnesium and its alloys-a critical review [J]. J. Alloys Compd., 2002, 336(1-2): 88-113
[5] Liang J, Srinivasan P B, Blawert C, et al. Comparison of electrochemical corrosion behavior of MgO and ZrO2 coatings on AM50 magnesium alloy formed by plasma electrolytic oxidation [J]. Corros. Sci., 2009, 51(10): 2483-2492
[6] Srinivasan P B, Blawert C, Dietzel W. Dry sliding wear behavior of plasma electrolytic oxidation coated AZ91 cast magnesium alloy [J]. Wear, 2009, 266(11-12): 1241-1247
[7] Zhang R F, Zhang S F, Duo S W. Influence of phytic acid concentration on coating properties obtained by MAO treatment on magnesium alloys [J]. Appl. Surf. Sci., 2009, 255(18): 7893-7897
[8] Wang L, Chen L, Yan Z C, et al. The influence of additives on the stability behavior of electrolyte discharges and PEO films characteristics [J]. J. Alloys Compd., 2010, 493(1-2): 445-452
[9] Lv G H, Chen H, Wang X Q, et al. Effects of additives on structure and corrosion resistance of plasma electrolytic oxidation coating on AZ91D magnesium alloy in phosphate based electrolyte [J]. Surf. Coat. Technol., 2010, 205(s1): s6-s40
[10] Zhao F, Liao A D, Zhang R F, et al. Effects of sodium tungstate on properties of micro-arc coatings on magnesium alloys [J]. Trans. Nonferrous Met. Soc. Chin., 2010, 20(s2): s683-s687
[11] Wu D, Liu X D, Lu K, et al. Influence of C3H8O3 in the electrolyte on characteristics and corrosion resistance of the microarc oxidation coatings formed on AZ91D magnesium alloy surface [J]. Appl. Surf. Sci., 2009, 255(16): 7115-7120
[12] Ikonopisov S. Theory of electrical breakdown during formation of barrier anodic films [J]. Electrochim. Acta, 1977, 22(10): 1077-1082
[13] Wang H B, Fang Z G, Jiang B L. Microarc Oxidation Technology and Its Applications in Sea Environments [M]. Beijing: National Defense Industry Press, 2010
(王虹斌, 方志刚, 蒋百灵. 微弧氧化技术及其在海洋环境中的应用 [M]. 北京: 国防工业出版社, 2010)
[14] Jiang B L, Xia T, Shi H Y, et al. The study on dielectric strength and corrosion resistance of ceramic coating prepared by micro-arc oxidation on magnesium alloy [J]. Trans. Mater. Heat Treat., 2005, 26(2): 82-85
(蒋百灵, 夏天, 时惠英等.镁合金微弧氧化陶瓷层的绝缘强度及耐蚀性的研究 [J]. 材料热处理学报, 2005, 26(2): 82-85)
[15] Ghasemi A, Raja V S, Blawert C, et al. The role of anions in the formation and corrosion resistance of the plasma electrolytic oxidation coatings [J]. Surf. Coat. Technol., 2010, 204(9-10): 1469-1478
[16] Su P B, Wu X H, Guo Y, et al. Effects of cathode current density on structure and corrosion resistance of plasma electrolytic oxidation coatings formed on ZK60 Mg alloy [J]. J. Alloys Compd., 2009, 475(1-2): 773-777
[17] Zhang J Q. Electrochemical Measurement Technology [M]. Beijing: Chemistry Industry Press, 2010
(张鉴清. 电化学测试技术 [M]. 北京: 化学工业出版社, 2010)
[1] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[2] 魏征, 马保吉, 李龙, 刘潇枫, 李慧. 镁合金表面超声滚压预处理对微弧氧化膜耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[3] 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[4] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[5] 刘海霞, 黄峰, 袁玮, 胡骞, 刘静. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[6] 郏义征, 王保杰, 赵明君, 许道奎. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[7] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[8] 张尧, 郭晨, 刘妍慧, 郝美娟, 成世明, 程伟丽. 挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[9] 姜冬雪,付颖,张峻巍,张伟,辛丽,朱圣龙,王福会. 钛合金表面Al2O3陶瓷膜制备及性能研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
[10] 郏义征, 赵明君, 程世婧, 王保杰, 王硕, 盛立远, 许道奎. 模拟人体体液中镁合金的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 463-468.
[11] 欧阳跃军,胡婷,王佳音,谢治辉. 镁合金表面层状双氢氧化物的电化学沉积和表征[J]. 中国腐蚀与防护学报, 2019, 39(5): 453-457.
[12] 王保杰,栾吉瑜,王士栋,许道奎. 镁合金应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[13] 刘丽,于思荣. 添加Gd对AM60镁合金耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 185-191.
[14] 樊志民, 于锦, 宋影伟, 单大勇, 韩恩厚. 镁合金点蚀的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(4): 317-325.
[15] 王志虎, 张菊梅, 白力静, 张国君. AZ91镁合金表面微弧氧化与化学镀铜复合处理层的微观组织与性能[J]. 中国腐蚀与防护学报, 2018, 38(4): 391-396.