Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (3): 279-286    DOI: 10.11902/1005.4537.2016.023
  本期目录 | 过刊浏览 | 高级检索 |
7020铝合金在3.5%NaCl溶液中的点蚀行为
戴芸1,2,3,刘胜胆1,2,3(),邓运来1,2,3,张新明1,2,3
1 中南大学材料科学与工程学院 长沙 410083
2 中南大学 有色金属材料科学与工程教育部重点实验室 长沙 410083
3 中南大学 有色金属先进结构材料与制造协同创新中心 长沙 410083
Pitting Corrosion of 7020 Aluminum Alloy in 3.5%NaCl Solution
Yun DAI1,2,3,Shengdan LIU1,2,3(),Yunlai DENG1,2,3,Xinming ZHANG1,2,3
1 School of Materials Science and Engineering, Central South University, Changsha 410083, China
2 Key Laboratory of Nonferrous Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083, China
3 Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation Centre, Changsha 410083, China
下载:  HTML  PDF(7081KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

采用浸泡实验与电化学循环极化曲线测试研究了7020铝合金在3.5% (质量分数) NaCl溶液中的点蚀行为,并结合金相显微镜 (OM)、扫描电镜 (SEM) 及扫描透射电镜 (STEM) 的微观组织观察结果对相关机理进行了分析和探讨。结果表明:7020铝合金的最大点蚀深度随时间变化的曲线为S型,呈缓慢增长-快速增长-保持稳定的过程。合金中α-AlFeSiMn相在点蚀浸泡过程中充当阴极,且发生了去合金化,周围的Al基体充当阳极而被腐蚀,含MnCr的弥散相则伴随Al基体的腐蚀而脱落。浸泡后期点蚀敏感性降低,表面的腐蚀产物可起到一定的保护作用。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
戴芸
刘胜胆
邓运来
张新明
关键词:  7020铝合金  点蚀  腐蚀动力学  第二相  循环极化曲线    
Abstract: 

The pitting corrosion behavior of 7020 aluminum alloy in 3.5%(mass fraction) NaCl solution was investigated by immersion test and cyclic polarization curve, while the corrosion morphology of the alloy was characterized by means of optical microscopy (OM), scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM). The results show that the curve of maximum depth of corrosion pits versus time exhibits ''S''-like shape. α-AlFeSiMn phase may act as a local cathode, thereby de-alloying occurred around particles of α-AlFeSiMn phase, i.e. Al matrix nearby the particles of α-AlFeSiMn phase was dissolved due to its anode nature, while Mn-and Cr-containing precipitates in the matrix may fall off along with the dissolved Al. Pitting susceptibility reduces in the later stage of corrosion due to that the formed corrosion products may act as a protective barrier for the alloy to some extent.

Key words:  7020 aluminum alloy    pitting corrosion    corrosion dynamics    second phase    cyclicpolarization curve
收稿日期:  2016-02-04                出版日期:  2017-07-04      发布日期:  2017-07-04      期的出版日期:  2017-07-04
基金资助: 国家重点研发计划 (2016YFB0300901) 和中南大学“升华育英计划” (2012年)
引用本文:    
戴芸,刘胜胆,邓运来,张新明. 7020铝合金在3.5%NaCl溶液中的点蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(3): 279-286.
Yun DAI,Shengdan LIU,Yunlai DENG,Xinming ZHANG. Pitting Corrosion of 7020 Aluminum Alloy in 3.5%NaCl Solution. Journal of Chinese Society for Corrosion and protection, 2017, 37(3): 279-286.
链接本文:  
http://www.jcscp.org/CN/10.11902/1005.4537.2016.023  或          http://www.jcscp.org/CN/Y2017/V37/I3/279
图1  7020铝合金的SEM像和第二相EDS分析结果
图2  7020铝合金的HADDF像及弥散相EDS分析结果
图3  7020铝合金浸泡不同时间后截面最大腐蚀深度
图4  7020铝合金浸泡1176 h后的截面SEM像
图5  以最大点蚀深度d表征的腐蚀动力学图
图6  7020铝合金浸泡不同时间后的SEM像
图7  7020铝合金浸泡不同时间后的SEM像和EDS分析结果
Time / h O Al Si Fe Mn
0 --- 68.73~85.74 4.60~5.43 16.39~20.90 3.93~4.19
168 6.71~8.19 55.02~61.11 5.23~6.14 14.75~19.28 3.23~3.41
1176 10.10~17.13 47.42~49.75 3.09~4.47 11.43~13.25 2.64~3.29
表1  7020铝合金在不同浸泡时间后第二相的化学成分
图8  7020铝合金浸泡不同时间后的极化曲线
Timeh EcorrmV EpitmV ErpmV |Epit-Erp|mV IcorrμAcm-2
0 -647 -572 -527 50 0.74
168 -967 -596 -546 50 15.60
504 -922 -622 -577 45 2.16
840 -974 -689 -663 26 137.00
1176 -1122 -642 -534 108 104.00
表2  7020铝合金浸泡不同时间后的极化曲线特征参数
[1] Gou G Q, Huang N, Chen H, et al.Research on stress corrosion behavior of A7N01S-T5 aluminum alloy for high speed train[J]. Mater. Sci. Technol., 2012, 20(4): 134
Gou G Q, Huang N, Chen H, et al.Research on stress corrosion behavior of A7N01S-T5 aluminum alloy for high speed train[J]. Mater. Sci. Technol., 2012, 20(4): 134
[1] (苟国庆, 黄楠, 陈辉等. 高速列车A7N01S-T5铝合金应力腐蚀行为研究[J]. 材料科学与工艺, 2012, 20(4): 134)
(苟国庆, 黄楠, 陈辉等. 高速列车A7N01S-T5铝合金应力腐蚀行为研究[J]. 材料科学与工艺, 2012, 20(4): 134)
[2] Zhao M, Jiang D X.Study on the pitting sensitivity of A7N01S-T5 aluminum alloy in degreasers[J]. Total Corros. Control, 2014, 28(1): 65
Zhao M, Jiang D X.Study on the pitting sensitivity of A7N01S-T5 aluminum alloy in degreasers[J]. Total Corros. Control, 2014, 28(1): 65
[2] (赵民, 姜代旬. A7N01S-T5型铝合金在清洗剂中的点蚀敏感性研究[J]. 全面腐蚀控制, 2014, 28(1): 65)
(赵民, 姜代旬. A7N01S-T5型铝合金在清洗剂中的点蚀敏感性研究[J]. 全面腐蚀控制, 2014, 28(1): 65)
[3] Grilli R, Baker M A, Castle J E, et al.Localized corrosion of a 2219 aluminium alloy exposed to a 3.5%NaCl solution[J]. Corros. Sci., 2010, 52: 2855
Grilli R, Baker M A, Castle J E, et al.Localized corrosion of a 2219 aluminium alloy exposed to a 3.5%NaCl solution[J]. Corros. Sci., 2010, 52: 2855
[4] Wang X H, Wang J H, Fu C W.Characterization of pitting corrosion of 7A60 aluminum alloy by EN and EIS techniques[J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 3907
Wang X H, Wang J H, Fu C W.Characterization of pitting corrosion of 7A60 aluminum alloy by EN and EIS techniques[J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 3907
[5] Sameljuk A V, Neikov O D, Krajnikov A V, et al.Effect of rapid solidification on the microstructure and corrosion behaviour of Al-Zn-Mg based material[J]. Corros. Sci., 2007, 49: 276
Sameljuk A V, Neikov O D, Krajnikov A V, et al.Effect of rapid solidification on the microstructure and corrosion behaviour of Al-Zn-Mg based material[J]. Corros. Sci., 2007, 49: 276
[6] Ismael M K.Corrosion resistance of aluminum alloy 7020-T6 in sea water[J]. Eng. Technol. J., 2011, 29: 1482
Ismael M K.Corrosion resistance of aluminum alloy 7020-T6 in sea water[J]. Eng. Technol. J., 2011, 29: 1482
[7] Al Sammarraie A M A, Ameen H A, Al-Rubaiey I S J, et al. Evaluation of the pitting corrosion for aluminum alloys 7020 in 3.5%NaCl solution with range of temperature (100~500) ℃[J]. Am. J. Sci. Ind. Res., 2011, 2: 283
Al Sammarraie A M A, Ameen H A, Al-Rubaiey I S J, et al. Evaluation of the pitting corrosion for aluminum alloys 7020 in 3.5%NaCl solution with range of temperature (100~500) ℃[J]. Am. J. Sci. Ind. Res., 2011, 2: 283
[8] Zaid B, Saidi D, Benzaid A, et al.Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy[J]. Corros. Sci., 2008, 50: 1841
Zaid B, Saidi D, Benzaid A, et al.Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy[J]. Corros. Sci., 2008, 50: 1841
[9] Song T.Investigation of ageing technics and microstructure analysis of 6N01 and 7N01 alloys [D]. Chongqing: Chongqing University, 2011
Song T.Investigation of ageing technics and microstructure analysis of 6N01 and 7N01 alloys [D]. Chongqing: Chongqing University, 2011
[9] (宋涛. 6N01和7N01时效工艺研究和组织分析 [D]. 重庆: 重庆大学, 2011)
(宋涛. 6N01和7N01时效工艺研究和组织分析 [D]. 重庆: 重庆大学, 2011)
[10] Hu Y L, Li D, Guo B L.Statistical study of corrosion dynamics law and method to predict calendar life for LY12CZ aluminum alloy[J]. Acta Aeronaut. Astronaut. Sin., 2000, 21(suppl.): 53
Hu Y L, Li D, Guo B L.Statistical study of corrosion dynamics law and method to predict calendar life for LY12CZ aluminum alloy[J]. Acta Aeronaut. Astronaut. Sin., 2000, 21(suppl.): 53
[10] (胡艳玲, 李荻, 郭宝兰. LY12CZ铝合金型材的腐蚀动力学统计规律研究及日历寿命预测方法探讨[J]. 航空学报, 2000, 21(增刊): 53)
(胡艳玲, 李荻, 郭宝兰. LY12CZ铝合金型材的腐蚀动力学统计规律研究及日历寿命预测方法探讨[J]. 航空学报, 2000, 21(增刊): 53)
[11] Song S Z, Tang Z L.An electrochemical impedance analysis on aluminium in 3.5%NaCl solution[J]. J. Chin. Soc. Corros. Prot., 1996, 16: 127
Song S Z, Tang Z L.An electrochemical impedance analysis on aluminium in 3.5%NaCl solution[J]. J. Chin. Soc. Corros. Prot., 1996, 16: 127
[11] (宋诗哲, 唐子龙. 工业纯铝在3.5%NaC1 溶液中的电化学阻抗谱分析[J]. 中国腐蚀与防护学报, 1996, 16: 127)
(宋诗哲, 唐子龙. 工业纯铝在3.5%NaC1 溶液中的电化学阻抗谱分析[J]. 中国腐蚀与防护学报, 1996, 16: 127)
[12] Song F X, Zhang X M, Liu S D, et al.Anisotropy of localized corrosion in 7050-T7451 Al alloy thick plate[J]. Trans. Nonferrous Met. Soc. China, 2013, 23: 2483
Song F X, Zhang X M, Liu S D, et al.Anisotropy of localized corrosion in 7050-T7451 Al alloy thick plate[J]. Trans. Nonferrous Met. Soc. China, 2013, 23: 2483
[13] Cui J H.The corrosion behavior of aluminum alloys and the organic coating in simulated atmospheric environment [D]. Beijing: University of Science & Technology Beijing, 2009
Cui J H.The corrosion behavior of aluminum alloys and the organic coating in simulated atmospheric environment [D]. Beijing: University of Science & Technology Beijing, 2009
[13] (崔继红. 模拟大气环境下铝合金及其有机涂层的腐蚀行为 [D]. 北京: 北京科技大学, 2009)
(崔继红. 模拟大气环境下铝合金及其有机涂层的腐蚀行为 [D]. 北京: 北京科技大学, 2009)
[14] Deng Y, Ye R, Xu G F, et al.Corrosion behaviour and mechanism of new aerospace Al-Zn-Mg alloy friction stir welded joints and the effects of secondary Al3ScxZr1-x nanoparticles[J]. Corros. Sci., 2015, 90: 359
Deng Y, Ye R, Xu G F, et al.Corrosion behaviour and mechanism of new aerospace Al-Zn-Mg alloy friction stir welded joints and the effects of secondary Al3ScxZr1-x nanoparticles[J]. Corros. Sci., 2015, 90: 359
[15] Winkler S L, Ryan M P, Flower H M.Pitting corrosion in cast 7XXX aluminium alloys and fibre reinforced MMCs[J]. Corros. Sci., 2004, 46: 893
Winkler S L, Ryan M P, Flower H M.Pitting corrosion in cast 7XXX aluminium alloys and fibre reinforced MMCs[J]. Corros. Sci., 2004, 46: 893
[16] Trueba M, Trasatti S P.Study of Al alloy corrosion in neutral NaCl by the pitting scan technique[J]. Mater. Chem. Phys., 2010, 121: 523
Trueba M, Trasatti S P.Study of Al alloy corrosion in neutral NaCl by the pitting scan technique[J]. Mater. Chem. Phys., 2010, 121: 523
[17] Birbilis N, Cavanaugh M K, Buchheit R G.Electrochemical behavior and localized corrosion associated with Al7Cu2Fe particles in aluminum alloy 7075-T651[J]. Corros. Sci., 2006, 48: 4202
Birbilis N, Cavanaugh M K, Buchheit R G.Electrochemical behavior and localized corrosion associated with Al7Cu2Fe particles in aluminum alloy 7075-T651[J]. Corros. Sci., 2006, 48: 4202
[18] Arrabal R, Mingo B, Pardo A, et al.Pitting corrosion of rheocast A356 aluminium alloy in 3.5wt.% NaCl solution[J]. Corros. Sci., 2013, 73: 342
Arrabal R, Mingo B, Pardo A, et al.Pitting corrosion of rheocast A356 aluminium alloy in 3.5wt.% NaCl solution[J]. Corros. Sci., 2013, 73: 342
[19] Zhang C, Wang R C, Feng Y, et al.Effects of alloying elements on electrochemical performance of aluminum anodes[J]. J. Central South Univ.(Sci. Technol.), 2012, 43: 81
Zhang C, Wang R C, Feng Y, et al.Effects of alloying elements on electrochemical performance of aluminum anodes[J]. J. Central South Univ.(Sci. Technol.), 2012, 43: 81
[19] (张纯, 王日初, 冯艳等. 合金元素对铝阳极电化学性能的影响[J]. 中南大学学报(自然科学版), 2012, 43: 81)
(张纯, 王日初, 冯艳等. 合金元素对铝阳极电化学性能的影响[J]. 中南大学学报(自然科学版), 2012, 43: 81)
[20] Wloka J, Hack T, Virtanen S.Influence of temper and surface condition on the exfoliation behaviour of high strength Al-Zn-Mg-Cu alloys[J]. Corros. Sci., 2007, 49: 1437
Wloka J, Hack T, Virtanen S.Influence of temper and surface condition on the exfoliation behaviour of high strength Al-Zn-Mg-Cu alloys[J]. Corros. Sci., 2007, 49: 1437
[1] 刘德强,柯黎明,徐卫平,邢丽,毛育青. 7075厚板铝合金搅拌摩擦焊接头晶间腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 293-299.
[2] 苗伟行,胡文彬,高志明,孔宪刚,赵茹,唐军务. 304不锈钢在海洋环境混凝土模拟液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(6): 543-548.
[3] 张弟,梁平,张云霞,史艳华,秦华. 库尔勒土壤模拟溶液中形成的腐蚀产物膜对X80钢点蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(4): 313-320.
[4] 刘静,李晓禄,朱崇伟,张涛,曾冠鑫,孟国哲,邵亚薇. 利用人工神经网络技术预测气田环境下316L不锈钢临界点蚀温度[J]. 中国腐蚀与防护学报, 2016, 36(3): 205-211.
[5] 孙擎擎,周文辉,谢跃煌,董朋轩,陈康华,陈启元. 微量Cl-和温度对7150-T76铝合金电化学腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(2): 121-129.
[6] 汪长鹏,申宇凤,陈聪聪,李谋成. 蒸汽环境对消声器用439不锈钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(2): 165-171.
[7] 郝敬丽,高永晶,董泽华. 硅氧烷硫化物与铈盐复合膜对铝合金耐点蚀能力的影响[J]. 中国腐蚀与防护学报, 2015, 35(6): 525-534.
[8] 方玉荣,付朝阳. 酸性FeCl3溶液中304不锈钢的超声腐蚀和缓蚀行为[J]. 中国腐蚀与防护学报, 2015, 35(4): 305-310.
[9] 刘在健,王佳,张彭辉,王燕华,张源. 5083铝合金在海水中的腐蚀行为及其阴极保护研究[J]. 中国腐蚀与防护学报, 2015, 35(3): 239-244.
[10] 何进, 晏敏胜, 杨丽景, Masoumeh Moradi, 宋振纶, 蒋业华. S32750超级双相不锈钢在NaCl溶液中的临界点蚀温度及电化学腐蚀机理[J]. 中国腐蚀与防护学报, 2015, 35(2): 106-112.
[11] 叶超, 杜楠, 田文明, 赵晴, 朱丽. pH值对304不锈钢在3.5%NaCl溶液中点蚀过程的影响[J]. 中国腐蚀与防护学报, 2015, 35(1): 38-42.
[12] 王海杰, 王佳, 彭欣, 山川. 钛合金在3.5%NaCl溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2015, 35(1): 75-80.
[13] 程从前, 曹铁山, 王冬颖, 姚景文, 王健, 关锰, 赵杰. Cr13不锈钢在盐酸溶液喷射冲刷作用下的表面腐蚀形貌表征[J]. 中国腐蚀与防护学报, 2014, 34(5): 439-444.
[14] 刘智勇, 贾静焕, 杜翠薇, 李晓刚, 王丽颖. X80和X52钢在模拟海水环境中的腐蚀行为与规律[J]. 中国腐蚀与防护学报, 2014, 34(4): 327-332.
[15] 石维, 董泽华, 郭兴蓬. 基于Hilbert-Huang变换的电化学噪声解析及其应用[J]. 中国腐蚀与防护学报, 2014, 34(2): 138-146.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed