Please wait a minute...
J Chin Soc Corr Pro  2009, Vol. 29 Issue (1): 44-49    DOI:
技术报告 Current Issue | Archive | Adv Search |
CORROSION ELECTROCHEMICAL BEHAVIOR OF N80 STEEL IN CO2/HAc ENVIRONMENTS
LIU Dong;QIU Yubing;GUO Xingpeng
School of Chemistry and Chemical Engineer; Huazhong University of Science & Technology; Hubei Key Laboratory of Materials Chemistry and Service Failure; Wuhan 430074
Download:  PDF(739KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of acetic acid on corrosion behavior of carbon steel (N80) in CO2-saturated 1%NaCl solution at 50℃ was investigated by using polarization curve,potentiostatic polarization and electrochemical impedance spectroscopy. The attention was focused on the effect of acetic acid and acetate on the anodic and cathodic reactions respectively. The results indicate that acetic acid adsorbed on electrode surface can be reduced directly by electrochemical reaction, which resulting in increasing the cathodic limited current. Anodic reaction mechanism of N80 steel does not change when HAc is added, but HAc can speed up the formation/dissolution process of intermediates, thereby accelerates anode dissolution process. Acetate can hydrate easily to create acetic acid in carbon dioxide saturated environments, therefore, no matter acetic acid or acetate can increases the CO2 corrosion of N80 steel.

Key words:  N80 steel      acetic acid      carbon dioxide Corrosion      corrosion mechanism     
Received:  14 May 2007     
ZTFLH: 

TG172

 
Corresponding Authors:  GUO Xingpeng     E-mail:  GuoXP@mail.hust.edu.cn

Cite this article: 

LIU Dong QIU Yubing GUO Xingpeng. CORROSION ELECTROCHEMICAL BEHAVIOR OF N80 STEEL IN CO2/HAc ENVIRONMENTS. J Chin Soc Corr Pro, 2009, 29(1): 44-49.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2009/V29/I1/44

[1] Zhang X Y. Carbon Dioxide Corrosion and Control[M].Beijing:Chemical Industry Press,2000,30
(张学元~.二氧化碳腐蚀与控制[M].北京:化学工业出版社, 2000,30)
[2] He Q L,Meng H M,Yu H Y,et al. Recent developments in carbon dioxide corrosion of N80 well tube steel[J]. J. Chin. Soc. Corros. Prot.,2007,27(3):186-192
(何庆龙,孟惠民,俞宏英等,N80油套管钢CO2腐蚀的研究进展[J].中国腐蚀与防护学报 2007,27(3):186-192)
[3]  Chen C F,Lu M X,Zhao G X,et al.Characteristics of CO2 corrosion scales on 1\%Cr-containing N80 steel
[J]. J. Chin. Soc. Corros. Prot.,2003,23(6):330-334
(陈长风,路民旭,赵国仙等.含1%Cr的N80钢CO2腐蚀产物膜特征[J].中国腐蚀与防护学报 2003,23(6):330-334)
[4]  Lin G F,Zhao G X,Bai Z Q,et al. Effect of CO2 partial pressure on the morphology of corrosion metallic product scale[J].J. Chin. Soc. Corros. Prot.,2004,24 (5):284-288
(林冠发,赵国仙,白真权等. CO2分压对金属腐蚀产物膜形貌结果的影响[J].中国腐蚀与防护学报,2004,24(5):284-288)
[5]  Zhao G X,Chen C F,Lu M X,et al.The formation of product scale and mass transfer channels during CO2 corrosion[J]. J. Chin. Soc. Corros. Prot.,2002,22(6):363-366
(赵国仙,陈长风,路民旭等. CO$_{2}$腐蚀的产物膜及膜中物质交换通道的形成[J].中国腐蚀与防护学报,2002,22(6):363-366)
[6]  Ma W H,Pei X H,Gao F,et al. Corrosion behaviors of N80 steelin simulated water from deep gaswell containing CO2 [J].J. Chin. Soc. Corros. Prot.,2007,27(1):8-13
(马文海,裴晓含,高飞等. N80钢在模拟深层气井溶液中的CO2腐蚀行为[J].中国腐蚀与防护学报2007,27(1):8-13)
[7]  Hedges B,McVeigh L. The role of acetate in CO2 corro-sion:the double whammy[A]. Corrosion/99[C]. Houston,Texas:NACE,1999,21
[8]  Garsany Y,Pletcher D,Hedges B. Speciation and electrochemistry ofbrines containing acetate ion and carbon dioxide[J]. J. Electroanaly. Chem.,2002,538-539:285-297
[9]  Guo X P,Tomoe Y. The cathodic reactions in CO2-saturated DGA solution[A]. 45th Symposium of Materials and Environment[C].Jpn. Soc. Corros. Eng.,1998,D-107
[10]  Harned H S,Ehlers R W. The dissociation constant of acetic acid from 0 to 60 centigrade[J]. J. Am. Chem. Soc.,1933,55:652-654
[11]  Schmitt G. Fundamental aspects of CO2 corrosion of  steel[A].Corrosion/83[C]. Houston,Texas: NACE,1983
[12]  George K,Nesic S,DeWaard C. Electrochemical investigation and modeling of carbon dioxide corrosion of carbon steel in the presence of acetic Acid[A]. Corrosion/2004[C]. Houston,Texas:NACE,2004,4379

 

[1] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[3] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[4] LIANG Yi, DU Yanxia. Research Progress on Evaluation Criteria and Mechanism of Corrosion Under Cathodic Protection and AC Interference[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[5] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[6] Baojie WANG,Jiyu LUAN,Shidong WANG,Daokui XU. Research Progress on Stress Corrosion Cracking Behavior of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[7] Xijing WANG, Boshi WANG, Chao YANG, Yan YANG, Bin SHEN. Hot Corrosion of Pure Nickel and Its Weld Joints in Molten Na2SO4-K2SO4 Salts[J]. 中国腐蚀与防护学报, 2018, 38(5): 495-501.
[8] Dahai XIA, Shizhe SONG, Jihui WANG, Zhimng GAO, Wenbin HU. Research Progress on Corrosion Mechanism of Tinned Steel Sheet Used for Food Parkaging[J]. 中国腐蚀与防护学报, 2017, 37(6): 513-518.
[9] Zhenning CHEN,Rihui CHEN,Jinjie PAN,Yanna TENG,Xingyue YONG. Organic/inorganic Compound Corrosion Inhibitor of L921A Steel in NaCl Solution[J]. 中国腐蚀与防护学报, 2017, 37(5): 473-478.
[10] Shuaihao HAN,Hongyu CEN,Zhenyu CHEN,Yubing QIU,Xingpeng GUO. Inhibition Behavior of Imidazoline Inhibitor in Corrosive Medium Containing Crude Oil and High-Pressure CO2[J]. 中国腐蚀与防护学报, 2017, 37(3): 221-226.
[11] Yan LI,Jintao LU,Zhen YANG,Ming ZHU,Yuefeng GU. Effect of Sulfur Content on Corrosion Behavior of Candidate Alloys Used for 700 ℃ Level A-USC Boiler in Simulated Coal Ash and Flue Gas Environments[J]. 中国腐蚀与防护学报, 2016, 36(5): 505-512.
[12] Shuzhen ZHAO,Lining XU,Juanjuan DOU,Wei CHANG,Minxu LU. Influence of Acetic Acid on Top Localized Corrosion of X70 Steel Pipeline in CO2 Containing Wet Gas[J]. 中国腐蚀与防护学报, 2016, 36(3): 231-237.
[13] Chong SUN, Yong WANG, Jianbo SUN, Tao JIANG, Weimin ZHAO, Yanchun ZHANG. Investigation Progress on Corrosion Behavior of Supercr-itical CO2 Transmission Pipelines Containing Impurities in CCS[J]. 中国腐蚀与防护学报, 2015, 35(5): 379-385.
[14] ZHAO Guoqiang, WEI Yinghua, LI Jing. Current Efficiency and Corrosion Mechanism of Al-Zn-In Sacrificial Anode at Different Current Densities[J]. 中国腐蚀与防护学报, 2015, 35(1): 69-74.
[15] ZHOU Jing, FENG Zhiyong, ZHANG Jinling, WANG Shebin. Effect of Nd Addition on Corrosion Resistance of AM60 Magnesium Alloy[J]. 中国腐蚀与防护学报, 2014, 34(2): 185-191.
No Suggested Reading articles found!