Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2016, Vol. 36 Issue (3): 231-237    DOI: 10.11902/1005.4537.2015.058
Orginal Article Current Issue | Archive | Adv Search |
Influence of Acetic Acid on Top Localized Corrosion of X70 Steel Pipeline in CO2 Containing Wet Gas
Shuzhen ZHAO1,Lining XU1(),Juanjuan DOU1,Wei CHANG2,Minxu LU1
1. Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2. CNOOC Research Center, Beijing 100027, China
Download:  HTML  PDF(1228KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The electrochemical corrosion behavior of X70 steel in CO2 saturated solution with various concentrations of acetic acid was studied by means of potentiodynamic polarization measurement and EIS. Whilst the influence of acetic acid on the top localized corrosion (TLC) of X70 steel pipelines was examined in a set of high temperature and high pressure autoclave. The results showed that in the CO2 saturated solution, the X70 steel was inactive state. While the free corrosion potential of X70 steel shifted positively and its corrosion current density increased with the increasing concentration of acetic acid, which may be related to the rising H+ concentration, so that the cathodic reaction was promoted. In addition, because of the presence of acetic acid, the corrosion scale become loose and easy to detach from the substrate. Finally a pitting corrosion model was proposed to describe the initiation and evolution of the pitting process.

Key words:  X70 pipeline steel      acetic acid      top of pipeline      localized corrosion      wet gas     
Received:  26 May 2015     

Cite this article: 

Shuzhen ZHAO,Lining XU,Juanjuan DOU,Wei CHANG,Minxu LU. Influence of Acetic Acid on Top Localized Corrosion of X70 Steel Pipeline in CO2 Containing Wet Gas. Journal of Chinese Society for Corrosion and protection, 2016, 36(3): 231-237.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2015.058     OR     https://www.jcscp.org/EN/Y2016/V36/I3/231

Fig.1  Schematic diagram of high temperature andhigh pressure autoclave
Fig.2  Potentiodynamic polarization curves of X70 steel in CO2 saturated solutions containing various concentrations of HAc
Fig.3  EIS (a) and equivalent circuit diagram (b) of X70 steel in CO2 saturated solutions with various concentrations of HAc
HAc concentrationmgL-1 Rs
Ωcm2
Q, Y0
10-4Ω-1cm-2s-n
Q, n Rt
Ωcm2
Rl
Ωcm2
L
Hcm2
0 15.62 2.6 0.85 455 1378 ---
500 14.45 2.4 0.91 181.9 723.4 ---
1000 11.16 5.0 0.82 110.5 409.7 ---
2000 13.05 5.1 0.86 71.3 75.8 539
Table 1  Equivalent circuit fitting results of X70 steel in CO2 saturated solutions with various concentrations of HAc
Fig.4  Corrosion rates of X70 steel in CO2 saturated solutions with different concentrations of HAc
Fig.5  Macro-morphologies of X70 steel immersed in CO2 saturated solutions with HAc concentrations of 0 mgL-1 (a, b), 500 mgL-1 (c, b) and 1000 mgL-1 (e, f) before (a, c, e) and after (b, d, f) removal of the corrosion products
Fig.6  SEM images of X70 steel in CO2 saturated solutions with HAc concentrations of 0 mgL-1 (a), 500 mgL-1 (b), 1000 mgL-1 (c) and the magnified images of areas D (d) and E (e) in Fig.6c
Fig.7  EDS results of areas A (a), B (b), C (c), F (d), G (e), H (f) and I (g) in Fig.6
Fig.8  XRD patterns of corrosion products of samplesurface
Fig.9  3D images of the deepest pits of X70 steel immersed in CO2 saturated solutions with 0 mgL-1 (a, b), 500 mgL-1 (c, d) and 1000 mgL-1 (e, f) HAc
HAc concentrationmgL-1 Pitting depthμm Pitting widthμm
0 --- ---
500 15.055 77.617
1000 31.985 80.667
Table 2  Pitting depth of X70 steel immersed in CO2 saturated solutions with various concentrations of HAc
Fig.10  Formation mechanism of pitting (I: bottom of pitting; II: middle part of pitting; III: top of pitting)
[1] Zhang G A, Cheng Y F.Corrosion of X65 steel in CO2-saturated oilfield formation water in the absence and presence of acetic acid[J].Corros. Sci., 2009, 51(8): 1589
[2] Li L H, Gong B, Yuan Y, et al.The influence of HAc on carbon steel of CO2 corrosion[J]. Nat. Gas Oil, 2014, 32(3): 50
[2] (李林辉, 龚兵, 袁勇等. 醋酸对碳钢CO2腐蚀的影响[J]. 天然气与石油, 2014, 32(3): 50)
[3] Garsany Y, Pletcher D, Hedges B.Speciation and electrochemistry of brines containing acetate ion and carbon dioxide[J]. J. Electroanal. Chem., 2002, 538: 285
[4] Garsany Y, Pletcher D, Sidorin D, et al.Quantifying the acetate-enhanced corrosion of carbon steel in oilfield brines[J]. Corrosion, 2004, 60: 1155
[5] Hedges B, Mc Veigh L.The role of acetate in CO2 corrosion: The double whammy [A]. Corrosion/1999[C]. San Antonio: 1999
[6] Amri J, Gulbrandsen E, Nogurira R P.Pit growth and stifing on carbon steel in CO2-containing media in the presence of HAc[J]. Electrochim. Acta, 2009, 54: 7338
[7] Zhang G A, Cheng Y F.On the fundamentals of electrochemical corrosion of X65 steel in CO2-containing formation water in the presence of acetic acid in petroleum production[J]. Corros. Sci., 2009, 51(1): 87
[8] Gulbrandsen E, Bilkova K.Solution chemistry effects on corrosion of carbon steels in presence of CO2 and acetic acid [A]. Corrosion/2006[C]. San Diego: 2006
[9] Cao C N.Electrochemical Corrosion [M]. Beijing: Chemical Industry Press, 1994
[9] (曹楚南. 腐蚀电化学 [M]. 北京: 化学工业出版社, 1994)
[10] Chen C F, Lu M X, Zhao G X, et al.The EIS analysis of cathodic reactions during CO2 corrosion of N80 steel[J]. Acta Metall. Sin., 2003, 39(1): 94
[10] (陈长风, 路民旭, 赵国仙等. N80油套管钢CO2腐蚀阴极过程电化学阻抗谱分析[J]. 金属学报, 2003, 39(1): 94)
[11] Deng H Y, He X Y, Wang H Y, et al.The corrosion behavior of X70 steel in the solution of HAc-NaAc with CO2 saturated[J]. J. Chin. Soc. Corros. Prot., 2007, 27(4): 224
[11] (邓海英, 何晓英, 王红云等. X70 钢在饱和CO2的HAc-NaAc溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2007, 27(4): 224)
[12] Sun Y, George K, Nesic S.The effect of acetic acid on localizedCO2 corrosion in wet gas flow [A]. Corrosion/2003[C]. San Diego: 2003
[13] Nordsveen M, Nesic S, Nyborg R.A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate scales-part 1: Theory and verification[J]. Corrosion, 2003, 59: 443
[14] Amri J.On growth and stifling of localized corrosion attacks in CO2 and acetic acid environments: Application to the Top-of-Line corrosion of wet gas pipelines operated in stratified flow regime[D]. Rhone-Alpes: Institut National Polytechnique de Grenoble-INPG, 2009
[15] Amri J, Gulbrandsen E, Nogueira R P.The effect of acetic acid on the pit propagation in CO2 corrosion of carbon steel[J]. Electrochem. Commun., 2008, 10(2): 200
[1] CHEN Xu, LI Shuaibing, ZHENG Zhongshuo, XIAO Jibo, MING Nanxi, HE Chuan. Microbial Corrosion Behavior of X70 Pipeline Steel in an Artificial Solution for Simulation of Soil Corrosivityat Daqing Area[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[2] JIA Yizheng, ZHAO Mingjun, CHENG Shijing, WANG Baojie, WANG Shuo, SHENG Liyuan, XU Daokui. Corrosion Behavior of Mg-Zn-Y-Nd Alloy in Simulated Body Fluid[J]. 中国腐蚀与防护学报, 2019, 39(6): 463-468.
[3] Baojie WANG,Jiyu LUAN,Shidong WANG,Daokui XU. Research Progress on Stress Corrosion Cracking Behavior of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[4] Peichang DENG, Quanbing LIU, Ziyun LI, Gui WANG, Jiezhen HU, Xie WANG. Corrosion Behavior of X70 Pipeline Steel in the Tropical Juncture Area of Seawater-Sea Mud[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[5] Zihan LIAO, Bo SONG, Ze REN, Chuan HE, Xu CHEN. Electrochemical Corrosion Behavior of Matrix and Weld Seam of X70 Steel in Na2CO3+NaHCO3 Solutions[J]. 中国腐蚀与防护学报, 2018, 38(2): 158-166.
[6] Chao FENG, Bicao PENG, Yi XIE, Jun WANG, Minghuan LI, Tangqing WU, Fucheng YIN. Corrosion Behavior of T91 Steel by Salt Spray with 0.1%NaHSO3 Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 583-589.
[7] Penghui ZHANG, Kun PANG, Kangkang DING, Xiangfeng KONG, Xin PENG. Research Progress of Scanning Vibrating Electrode Technique in Field of Corrosion[J]. 中国腐蚀与防护学报, 2017, 37(4): 315-321.
[8] Xiao TANG,Chuntao SHI,Guang CAO,Yan LI. Effect of Coastal Soil Environment on Localized Corrosion for Oil and Gas Pipelines[J]. 中国腐蚀与防护学报, 2016, 36(3): 191-196.
[9] Boqiang SONG,Xu CHEN,Guiyang MA,Rui LIU. Effect of SRB on Corrosion Behavior of X70 Pipeline Steel in Near-neutral pH Solution[J]. 中国腐蚀与防护学报, 2016, 36(3): 212-218.
[10] LIU Yu,LI Yan. Research Progress of CO2 Corrosion of Internal Gas Pipeline Steel[J]. 中国腐蚀与防护学报, 2013, 33(1): 1-9.
[11] KONG Dejun, WU Yongzhong, LONG Dan, ZHOU Zhaozheng. EFFECTS OF LASER SHOCK PROCESSING ON H2S STRESS CORROSION OF X70 PIPELINE STEEL WELDED JOINT[J]. 中国腐蚀与防护学报, 2011, 31(2): 125-129.
[12] JIA Zhijun, LI Xiaogang, LIANG Ping, WANG Liwei. ELECTROCHEMICAL CHARACTERIZATION OF PASSIVE FILM FORMED UNDER DIFFERENT POTENTIAL CONDITION ON X70 PIPELINE STEEL IN NaHCO3 SOLUTION[J]. 中国腐蚀与防护学报, 2010, 30(3): 241-245.
[13] LIU Zhiyong;DU Cuiwei;LI Xiaogang;JIA Gaifeng. CHARACTERISTIC OF X70 PIPELINE STEEL IN THE KU'ERLE SOIL ENVIRONMENT[J]. 中国腐蚀与防护学报, 2010, 30(1): 46-50.
[14] ZHANG Liang LI Xiaogang DU Cuiwei LIANG Ping. EFFECT OF APPLIED POTENTIALS ON STRESS CORROSION CRACKING OF X70 PIPELINE STEEL IN SIMULATED KU'ERLE SOIL SOLUTION[J]. 中国腐蚀与防护学报, 2009, 29(5): 353-359.
[15] LIU Dong QIU Yubing GUO Xingpeng. CORROSION ELECTROCHEMICAL BEHAVIOR OF N80 STEEL IN CO2/HAc ENVIRONMENTS[J]. 中国腐蚀与防护学报, 2009, 29(1): 44-49.
No Suggested Reading articles found!