Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2015, Vol. 35 Issue (5): 379-385    DOI: 10.11902/1005.4537.2014.228
Current Issue | Archive | Adv Search |
Investigation Progress on Corrosion Behavior of Supercr-itical CO2 Transmission Pipelines Containing Impurities in CCS
Chong SUN1,Yong WANG1,Jianbo SUN1(),Tao JIANG1,Weimin ZHAO1,Yanchun ZHANG2
1. School of Mechanical & Electronic Engineering, China University of Petroleum, Qingdao 266580, China
2. China Petroleum LONGWAY Engineering Project Management Co. Ltd., Langfang 065000, China
Download:  HTML  PDF(432KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A range of impurities may exist in supercritical CO2 stream of transmission pipelines for carbon capture and storage (CCS) process, which are the potential corrosive factors to induce operational risks of the supercritical CO2 transmission pipeline. The impurities induced inner side corrosion of supercritical CO2 pipelines may become the bottleneck restricting the development and application of CCS. This paper reviews the recent research progress on the corrosion behavior of pipelines for supercritical CO2 transmission. The potential corrosion risks and the impact factors on corrosion are analyzed. The influence of impurities on the phase behavior, water chemistry characteristics, corrosion scales and the corrosion mechanism of transmission pipelines is also discussed. The shortcomings in the present investigations and the key scientific problems for further research are also pointed out.

Key words:  carbon capture and storage      supercritical CO2      impurity      corrosion scale      corrosion mechanism     
ZTFLH:     
Fund:  

Cite this article: 

Chong SUN, Yong WANG, Jianbo SUN, Tao JIANG, Weimin ZHAO, Yanchun ZHANG. Investigation Progress on Corrosion Behavior of Supercr-itical CO2 Transmission Pipelines Containing Impurities in CCS. Journal of Chinese Society for Corrosion and protection, 2015, 35(5): 379-385.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2014.228     OR     https://www.jcscp.org/EN/Y2015/V35/I5/379

Ref. CO2 H2O O2 SOx NOx H2S CH4 N2 CO
DYNAMIS[6] >95.5 0.05 Aquifer<4, EOR<0.01~0.1 0.01 0.01 0.02 Aquifer<4, EOR<2 <4 0.2
Kinder Morgan[11] 95 0.063 0.001 --- --- 0.001~0.02 5 4 ---
Weyburn[11] 96 0.002 <0.007 --- --- 0.9 0.7 <0.03 0.1
Sheep Moutain[11] 96.8~97.4 0.0315 --- --- --- --- 1.7 0.6~0.9 ---
Central Basin[11] 98.5 0.063 <0.001 --- --- <0.002 0.2 1.3 ---
Literature data[12] 90~95 0.001~0.063 0.001~0.1 0.01~0.15 0.01~0.15 0.01~1.50 <5 <4 0.01~4
Table 1  Controlling of impurity content of supercritical CO2 in the process of CCS
Steel Temperature Pressure MPa Volume fraction of H2O / % Volume fraction of O2 / % Volume fraction of SO2 / % Volume fraction of NO2 / % Corrosion rate mma-1
X65[4] 50 4~8 Saturability 0 0 0 ~0.2
X70[14] 22 6.3 0.149 0 0 0 No
X70[14] 22 6.3 0.244 0 0 0 Slight
X65[15] 20 10 0.122 0 0 0 No
X65[16] 50 8 Saturability 0 0 0 0.38
X65[16] 50 8 Saturability 4 1 0 >7
1010[17] 45 7.58 0.244 0.01 0 0 2.3
1010[17] 45 7.58 0.244 0 0.01 0 4.6
1010[17] 45 7.58 0.244 0 0 0.01 11.6
X65[18] 50 8 0.159 4 1 0 3.7
X70[19] 50 10 Saturability 0.1 0.2~2 0 0.2~0.9
X65[20] 25 10 0.0488 0 0.01~0.0344 0.0096~0.0478 0.005~1.6
X70[21] 50 10 RH: 50~60% 0.1 2 0 ~0.1
Table 2  Relevant research results about CO2 transmission pipeline corrosion in recent years
[1] IEA. Energy Technology Perspectives 2010, Scenarios & Strategies to 2050 (http://www.iea.org/techno/etp/etp10/English.pdf
[2] IPCC. Carbon Dioxide Capture and Storage[M]. New York: Cambridge University Press, 2005
[3] Sim S, Cole I S, Bocher F, et al. Investigating the effect of salt and acid impurities in supercritical CO2 as relevant to the corrosion of carbon capture and storage pipelines[J]. Int. J. Greenh. Gas Con., 2013, 17: 534
[4] Choi Y S, Nesic S. Determining the corrosive potential of CO2 transport pipeline in high pCO2-water environments[J]. Int. J. Greenh. Gas Con., 2011, 5: 788
[5] Dooley J J, Dahowski R T, Davidson C L. Comparing existing pipeline networks with the potential scale of future U.S. CO2 pipeline networks[J]. Energy Procedia, 2009, 1: 1595
[6] De Visser E, Hendriks C, Barrio M, et al. Dynamis CO2 quality recommendations[J]. Int. J. Greenh. Gas Con., 2008, 2: 478
[7] Eldevik F, Graver B, Torbergsen L E, et al. Development of a guideline for safe, reliable and cost efficient transmission of CO2 in pipelines[J]. Energy Procedia, 2009, 1: 1579
[8] Sass B M, Farzan H, Prabhakar R, et al. Considerations for treating impurities in oxy-combustion flue gas prior to sequestration[J]. Energy Procedia, 2009, 1: 535
[9] Cole I S, Corrigan P, Sim S, et al. Corrosion of pipelines used for CO2 transport in CCS: Is it a real problem[J]. Int. J. Greenh. Gas Con., 2011, 5: 749
[10] Zuo T, Liu X H, Jiang X, et al. Development of reasearch in corrosion on supercritical CO2 transportation pipelines[J]. Corros. Prot. Petrochem. Ind., 2011, 28(6): 1 (左甜, 刘小辉, 蒋秀等. 超临界CO2输送管道的腐蚀研究进展[J]. 石油化工腐蚀与防护, 2011, 28(6): 1)
[11] Oosterkamp A, Ramsen J. State-of-the-art overview of CO2 pipeline transport with relevance to offshore pipelines [R]. Oslo: Gassco and Shell Technology Norway, Open Polytec report: POL-O-2007-138-A, 2008
[12] Dustad A, Halseid M. Internal corrosion in dense phase CO2 transport pipelines-state of the art and the need for further R & D [A]. Corrosion/2012 [C]. Houston, Texas: NACE, 2012, 1452
[13] Gale J, Davison J. Transmission of CO2-safety and economic considerations[J]. Energy, 2004, 29(10): 1319
[14] McGrail B P, Schaef H T, Glezakou V A, et al. Water reactivity in the liquid and supercritical CO2 phase: has half the story been neglected?[J]. Energy Procedia, 2009, 1: 3415
[15] Dugstad A, Morland B, Clausen S. Corrosion of transport pipelines for CO2 -effect of water ingress[J]. Energy Procedia, 2011, 4: 3063
[16] Choi Y S, Nesic S. Effect of impurities on the corrosion behavior of carbon steel in supercritical CO2-water environments [A]. Corrosion/2010 [C]. Houston, Texas: NACE, 2010, 10196
[17] Ayello F, Evans K, Thodla R, et al. Effect of impurities on corrosion of steel in supercritical CO2 [A]. Corrosion/2010 [C]. Houston, Texas: NACE, 2010, 10193
[18] Choi Y S, Nesic S. Effect of water content on the corrosion behavior of carbon steel in supercritical CO2 phase with impurities [A]. Corrosion/ 2011 [C]. Houston, Texas: NACE, 2011, 11377
[19] Xiang Y, Wang Z, Xu C, et al. Impact of SO2 concentration on the corrosion rate of X70 steel and iron in water-saturated supercritical CO2 mixed with SO2[J]. J. Supercrit. Fluid., 2011, 58: 286
[20] Dugstad A, Halseid M, Morland B. Effect of SO2 and NO2 on corrosion and solid formation in dense phase CO2 pipelines[J]. Energy Procedia, 2013, 37: 2877
[21] Xiang Y, Wang Z, Yang X X, et al. The upper limit of moisture content for supercritical CO2 pipeline transport[J]. J. Supercrit. Fluid., 2012, 67: 14
[22] Ruhl A S, Kranzmann A. Corrosion behavior of various steels in a continuous flow of carbon dioxide containing impurities[J]. Int. J. Greenh. Gas Con., 2012, 9: 85
[23] Thodla R, Francois A, Sridhar N. Materials performance in supercritical CO2 environments [A]. Corrosion/2009 [C]. Houston, Texas: NACE, 2009, 09255
[24] Cole I S, Paterson D, Corrigan P, et al. State of the aqueous phase in liquid and supercritical CO2 as relevant to CCS pipelines[J]. Int. J. Greenh. Gas Con., 2012, 7: 82
[25] Dugstad A, Halseid M, Morland B, et al. Corrosion in dense phase CO2-the impact of depressurisation and accumulation of impurities[J]. Energy Procedia, 2013, 37: 3057
[26] Kladlaew N, Idem R, Tontiwachwuthikul P, et al. Studies on corrosion and corrosion inhibitors for amine based solvents for CO2 absorption from power plants flue gases containing CO2, O2 and SO2[J]. Energy Procedia, 2011, 4: 1761
[27] Ruhl A S N,Kranzmann A. Investigation of pipeline corrosion in pressurized CO2 containing impurities [J]. Energy Procedia, 2013, 37: 3131
[28] Dugstad A, Morland B, Clausen S. Transport of dense phase CO2 in C-steel pipelines-when is corrosion an issue [A]. Corrosion/2011 [C]. Houston, Texas: NACE, 2011, 11070
[29] Farelas F, Choi Y S, Nesic S. Effects of CO2 phase change, SO2 content and flow on the corrosion of CO2 transmission pipeline steel [A]. Corrosion/2012 [C]. Houston, Texas: NACE, 2012, 1322
[30] Xiang Y, Wang Z, Xu M H, et al. A mechanistic model for pipeline steel corrosion in supercritical CO2-SO2-O2-H2O environments[J]. J. Supercrit. Fluid., 2013, 82: 1
[31] Graedel T E. Gildes model studies of aqueous chemistry. I. Formulation and potential applications of the multi-regime model[J]. Corros. Sci., 1996, 38(12): 2153
[33] Ruhl A S, Kranzmann A. Investigation of corrosive effects of sulphur dioxide, oxygen and water vapour on pipeline steels[J]. Int. J. Greenh. Gas Con., 2013, 13: 9
[1] LI Chengyuan, CHEN Xu, HE Chuan, LI Hongjin, PAN Xin. Alternating Current Induced Corrosion of Buried Metal Pipeline: A Review[J]. 中国腐蚀与防护学报, 2021, 41(2): 139-150.
[2] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[3] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[4] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[5] LIANG Yi, DU Yanxia. Research Progress on Evaluation Criteria and Mechanism of Corrosion Under Cathodic Protection and AC Interference[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[6] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[7] Baojie WANG,Jiyu LUAN,Shidong WANG,Daokui XU. Research Progress on Stress Corrosion Cracking Behavior of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[8] Xijing WANG, Boshi WANG, Chao YANG, Yan YANG, Bin SHEN. Hot Corrosion of Pure Nickel and Its Weld Joints in Molten Na2SO4-K2SO4 Salts[J]. 中国腐蚀与防护学报, 2018, 38(5): 495-501.
[9] Dahai XIA, Shizhe SONG, Jihui WANG, Zhimng GAO, Wenbin HU. Research Progress on Corrosion Mechanism of Tinned Steel Sheet Used for Food Parkaging[J]. 中国腐蚀与防护学报, 2017, 37(6): 513-518.
[10] Zhenning CHEN,Rihui CHEN,Jinjie PAN,Yanna TENG,Xingyue YONG. Organic/inorganic Compound Corrosion Inhibitor of L921A Steel in NaCl Solution[J]. 中国腐蚀与防护学报, 2017, 37(5): 473-478.
[11] Yan LI,Jintao LU,Zhen YANG,Ming ZHU,Yuefeng GU. Effect of Sulfur Content on Corrosion Behavior of Candidate Alloys Used for 700 ℃ Level A-USC Boiler in Simulated Coal Ash and Flue Gas Environments[J]. 中国腐蚀与防护学报, 2016, 36(5): 505-512.
[12] Yucheng ZHANG,Xinhua JU,Xiaolu PANG,Kewei GAO. Effect of O2 Concentration on Corrosion Rate of Steels in Supercritical CO2[J]. 中国腐蚀与防护学报, 2015, 35(3): 220-226.
[13] ZHAO Guoqiang, WEI Yinghua, LI Jing. Current Efficiency and Corrosion Mechanism of Al-Zn-In Sacrificial Anode at Different Current Densities[J]. 中国腐蚀与防护学报, 2015, 35(1): 69-74.
[14] ZHOU Jing, FENG Zhiyong, ZHANG Jinling, WANG Shebin. Effect of Nd Addition on Corrosion Resistance of AM60 Magnesium Alloy[J]. 中国腐蚀与防护学报, 2014, 34(2): 185-191.
[15] CHANG Xinlong,LIU Wanlei,LAI Jianwei,ZHANG Xiaojun. Stress Corrosion Cracking Susceptibility of LD10 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2013, 33(4): 347-350.
No Suggested Reading articles found!