Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2015, Vol. 35 Issue (1): 69-74    DOI: 10.11902/1005.4537.2013.279
Current Issue | Archive | Adv Search |
Current Efficiency and Corrosion Mechanism of Al-Zn-In Sacrificial Anode at Different Current Densities
ZHAO Guoqiang, WEI Yinghua(), LI Jing
State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Download:  HTML  PDF(515KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The current efficiency and corrosion mechanism of Al-Zn-In sacrificial anode by different impressed current densities were investigated by using electrochemical methods. Results showed that the corrosion mechanism and the current efficiency of the Al-Zn-In sacrificial anode varied with the impressed current densities. The current efficiency decreases dramatically by a low current density, this may be caused by the fact that the re-deposition of the dissolved cations (In3+, Zn2+) was suppressed and an oxides film might formed on the alloy surface. A mass loss of the anode might be caused by the cracking and dissolving of the oxides film, and this might be responsible to the current efficiency of Al-Zn-In sacrificial anode lower than that theoretically expected by the low impressed current density.

Key words:  Al-Zn-In sacrificial anode      working current density      current efficiency      corrosion mechanism     
ZTFLH:  TG174.1  

Cite this article: 

ZHAO Guoqiang, WEI Yinghua, LI Jing. Current Efficiency and Corrosion Mechanism of Al-Zn-In Sacrificial Anode at Different Current Densities. Journal of Chinese Society for Corrosion and protection, 2015, 35(1): 69-74.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2013.279     OR     https://www.jcscp.org/EN/Y2015/V35/I1/69

Fig.1  Current efficiency of Al-Zn-In sacrificial anode at different working current densities
Current density / mAcm-2 Average mass loss / mg Average electric quantity / Ah Average current efficiency / %
0.005 7.70 3.48×10-3 16.73
0.01 19.90 8.07×10-3 16.20
0.1 39.30 64.09×10-3 60.40
0.7 269.60 0.54 74.16
1 285.95 0.67 86.17
2.5 556.30 1.27 84.33
Table 1  Average values of mass loss, electric quantity and current efficiency of Al-Zn-In sacrificial anode at different working current densities
Fig.2  Polarization curve of Al-Zn-In sacrificial anode in artificial seawater
Fig.3  Nyquist plot of Al-Zn-In sacrificial anode at self-corrosion state
Fig.4  Nyquist plots of Al-Zn-In sacrificial anode at polarization current of 0.005 mA (a), 0.01 mA (b), 0.05 mA (c), 0.1 mA (d), 0.5 mA (e) and 1 mA (f)
Current density
mAcm-2
Equivalent capacit-ance / Fcm-2 Thickness of
oxide film / m
0.005 1.50×10-5 5.90×10-10
0.01 1.94×10-5 4.56×10-10
0.05 4.68×10-5 1.89×10-10
0.1 1.30×10-4 4.50×10-11
0.5 1.02×10-4 5.80×10-11
1 1.15×10-4 5.13×10-11
Table 2  Calculated values of oxide film at different current densities
Fig.5  Calculated values of oxide film at different current densities
[1] Talavera M A, Valdez S, Huarez-Islas J A, et al. EIS testing of new aluminium sacrificial anodes[J]. J. Appl. Electrochem., 2002, 32: 897
[2] Song Y H, Guo Z C, Fan A M, et al. Current state of research on sacrificial anode materials[J]. Corros. Sci. Prot. Technol., 2004, 16(1): 24
(宋曰海, 郭忠诚, 樊爱民等. 牺牲阳极材料的研究现状[J]. 腐蚀科学与防护技术,2004, 16(1): 24)
[3] Shibli S M A, Gireesh V S. Activation of aluminium alloy sacrificial anodes by selenium[J]. Corros. Sci., 2005, 47: 2091
[4] Ma J L, Wen J B. The effects of lanthanum on microstructure and electrochemical properties of Al-Zn-In based sacrificial anode alloys[J]. Corros. Sci., 2009, 51: 2115
[5] Xu H Y, Li Y B. Activation behavior of aluminum sacrificial anodes in sea water[J]. J. Chin. Soc. Corros. Prot., 2008, 28(3): 186
(徐宏妍, 李延斌. 铝基牺牲阳极在海水中的活化行为[J]. 中国腐蚀与防护学报, 2008, 28(3): 186)
[6] Barbucci A, Cerisola G, Bruzzone G, et al. Activation of aluminium anodes by the presence of intermetallic compounds[J]. Electrochim. Acta, 1997, 42(15): 2369
[7] He J G, Wen J B, Zhou X D, et al. Effect of grain size on electrochemical performance of Al-Zn-Sn-Ga alloy[J]. Corros. Sci. Prot. Technol., 2012, 24(6): 484
(贺俊光, 文九巴, 周旭东等. 晶粒度对Al-Zn-Sn-Ga阳极电化学性能的影响[J]. 腐蚀科学与防护技术, 2012, 24(6): 484)
[8] Salinas D R, Garcia S G, Bessone J B. Influence of alloying elements and microstructure on aluminium sacrificial anode performance: case of Al-Zn[J]. J. Appl. Electrochem., 1999, 29: 1063
[9] Schrieber C F, Murray R W. Effect of hostile marine environments on the Al-Zn-In-Si sacrificial anode[J]. Mater. Perform., 1988, 27(7): 70
[10] Huang Y B, Song G W, Liu X B, et al. Corrosion protection of Al-Zn-In-Mg-Ga-Mn aluminous sacrificial anode[J]. J. Chin. Soc. Corros. Prot., 2012, 32(1): 44
(黄燕滨, 宋高伟, 刘学斌等. Al-Zn-In-Mg-Ga-Mn牺牲阳极腐蚀防护行为研究[J]. 中国腐蚀与防护学报, 2012, 32(1): 44)
[11] Smith S N, Reding J T, Jr Riley R L. Development of a broad application saline water aluminum anode-“Galvalum” III[J]. Mater. Perform., 1978, 17(3): 32
[12] GB/T 17848-1999. Test methods for electrochemical properties of sacrificial anodes[S]
(GB/T 17848-1999. 牺牲阳极电化学性能实验方法[S])
[13] Wolfson S L. Operating performance of aluminum anodes-results from laboratory and field tests[J]. Mater. Perform., 1994, 33(2): 22
[14] Reboul M C, Gimenez P H, Rameau J J. A proposed mechanism for Al anodes[J]. Corrosion, 1984, 40(7): 366
[15] Chao C Y, Lin L F, Macdonald D D. A point defect model for anodic passive films[J]. J. Electrochem. Soc., 1981, 128(6): 1187
[1] LI Chengyuan, CHEN Xu, HE Chuan, LI Hongjin, PAN Xin. Alternating Current Induced Corrosion of Buried Metal Pipeline: A Review[J]. 中国腐蚀与防护学报, 2021, 41(2): 139-150.
[2] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[3] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[4] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[5] LIANG Yi, DU Yanxia. Research Progress on Evaluation Criteria and Mechanism of Corrosion Under Cathodic Protection and AC Interference[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[6] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[7] WANG Tingyong, DONG Ruyi, XU Shi, WANG Hui. Electrochemical Properties of Graphene Modified Mixed Metal Oxide Anodes of Ti/IrTaSnSb-G in NaCl Solutions at Low Temperature[J]. 中国腐蚀与防护学报, 2020, 40(3): 289-294.
[8] Baojie WANG,Jiyu LUAN,Shidong WANG,Daokui XU. Research Progress on Stress Corrosion Cracking Behavior of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[9] Xijing WANG, Boshi WANG, Chao YANG, Yan YANG, Bin SHEN. Hot Corrosion of Pure Nickel and Its Weld Joints in Molten Na2SO4-K2SO4 Salts[J]. 中国腐蚀与防护学报, 2018, 38(5): 495-501.
[10] Dahai XIA, Shizhe SONG, Jihui WANG, Zhimng GAO, Wenbin HU. Research Progress on Corrosion Mechanism of Tinned Steel Sheet Used for Food Parkaging[J]. 中国腐蚀与防护学报, 2017, 37(6): 513-518.
[11] Zhenning CHEN,Rihui CHEN,Jinjie PAN,Yanna TENG,Xingyue YONG. Organic/inorganic Compound Corrosion Inhibitor of L921A Steel in NaCl Solution[J]. 中国腐蚀与防护学报, 2017, 37(5): 473-478.
[12] Yan LI,Jintao LU,Zhen YANG,Ming ZHU,Yuefeng GU. Effect of Sulfur Content on Corrosion Behavior of Candidate Alloys Used for 700 ℃ Level A-USC Boiler in Simulated Coal Ash and Flue Gas Environments[J]. 中国腐蚀与防护学报, 2016, 36(5): 505-512.
[13] Chong SUN, Yong WANG, Jianbo SUN, Tao JIANG, Weimin ZHAO, Yanchun ZHANG. Investigation Progress on Corrosion Behavior of Supercr-itical CO2 Transmission Pipelines Containing Impurities in CCS[J]. 中国腐蚀与防护学报, 2015, 35(5): 379-385.
[14] ZHOU Jing, FENG Zhiyong, ZHANG Jinling, WANG Shebin. Effect of Nd Addition on Corrosion Resistance of AM60 Magnesium Alloy[J]. 中国腐蚀与防护学报, 2014, 34(2): 185-191.
[15] CHANG Xinlong,LIU Wanlei,LAI Jianwei,ZHANG Xiaojun. Stress Corrosion Cracking Susceptibility of LD10 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2013, 33(4): 347-350.
No Suggested Reading articles found!