Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (3): 731-738    DOI: 10.11902/1005.4537.2024.206
Current Issue | Archive | Adv Search |
Corrosion Behavior of Mg-Gd-Y-Zr Alloy in Simulated Coastal Storage Environment
ZHANG Chao1, CHEN Junhang2, ZOU Shiwen1, ZHANG Huan1, LI Zhaoliang1, XIAO Kui2()
1.Aerospace Research Institute of Materials & Processing Technology, Beijing 100076, China
2.Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

ZHANG Chao, CHEN Junhang, ZOU Shiwen, ZHANG Huan, LI Zhaoliang, XIAO Kui. Corrosion Behavior of Mg-Gd-Y-Zr Alloy in Simulated Coastal Storage Environment. Journal of Chinese Society for Corrosion and protection, 2025, 45(3): 731-738.

Download:  HTML  PDF(15748KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In order to evaluate the corrosion behavior evolution of aerospace cast Mg-Gd-Y-Zr alloy in coastal storage environments, herein, an accelerated environmental spectrum test method was designed to simulate coastal storage environments based on environmental parameters of several typical southern coastal cities of our country. The corrosion behavior of Mg-Gd-Y-Zr alloy in the simulated coastal storage environment was studied by means of corrosion kinetics, scanning electron microscopy, X-ray diffraction analysis, and electrochemical testing. The results showed that with the progress of corrosion process, corrosion products formed on Mg-Gd-Y-Zr alloy increased gradually, and the resistance Rf of the rust layer continued to increase, while the alloy showed continually a decreasing trend in corrosion rate. The XRD results indicate that the corrosion products are composited mainly of Mg(OH)2, MgCl2·6H2O, MgO, Gd2O3, and a small amount of ZrO2. Correspondingly, the scale of corrosion products on the alloy was gradually divided into two layers, with the outer layer being relatively loose and the inner layer being relatively dense.

Key words:  casting Mg-alloy      storage environment      corrosion product     
Received:  09 July 2024      32134.14.1005.4537.2024.206
ZTFLH:  TG172  
Corresponding Authors:  XIAO Kui, E-mail: xiaokui@ustb.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.206     OR     https://www.jcscp.org/EN/Y2025/V45/I3/731

Fig.1  Accelerated test method for simulating coastal storage environment
Fig.2  Microscopic morphology and phase composition of Mg-Gd-Y-Zr alloy: (a) metallographic structure morphology, (b) BSE morphology, (c) XRD pattern
Fig.3  Corrosion mass loss (a) and mass loss rate (b) curves of Mg-Gd-Y-Zr alloy after simulating coastal storage envir-onment experiment
Fig.4  Surface corrosion product morphologies of Mg-Gd-Y-Zr alloy after simulating coastal storage environment experiment for 284 h (a), 568 h (b), 852 h (c) and 1136 h (d)
PointCOMgClGd
a10.938.849.80.5-
b7.717.664.2-10.5
c11.442.845.8--
d10.643.446.0--
e10.937.751.4--
f11.441.247.5--
g14.544.728.212.6-
h15.354.130.6--
Table 1  EDS spectra of surface corrosion products
Fig.5  Morphologies of rust layer on the cross-section of Mg-Gd-Y-Zr alloy after simulating coastal storage environment experiment for 284 h (a), 568 h (b), 852 h (c) and 1136 h (d)
Fig.6  XRD patterns of corrosion products after different cycles of simulating coastal storage environment experiment
Fig.7  Polarization curves (a) and fitting parameters (b) of Mg-Gd-Y-Zr alloy after simulating coastal storage environment experiment
Fig.8  Nyquist (a) and Bode modulus (b) plots of Mg-Gd-Y-Zr alloy after simulating coastal storage environment experiment
Test time / hRs / Ω·cm2QRf / Ω·cm2
Y0 / 10-6 Ω-1·cm-2·s nn
28215.935.40.71821551
56825.823.80.71953012
85241.930.40.63514633
113674.723.70.617111280
Table 2  Fitting parameters of electrochemical impedance spectroscopy
[1] Liu Z S, Li Y D, Zhao J W, et al. Research on aluminum alloy materials and application technology for automobile lightweight [J]. Mater. China, 2022, 41: 786
刘贞山, 李英东, 赵经纬 等. 汽车轻量化用铝合金材料及应用技术的研究 [J]. 中国材料进展, 2022, 41: 786
[2] Wu G R, Chen X H. Research on material lightweight and shape design of automobile wheel hub [J]. Mater. Rep., 2021, 35: 19181
吴国荣, 陈旭辉. 汽车轮毂材料轻量化与造型设计研究 [J]. 材料导报, 2021, 35: 19181
[3] Huang Z F, Yong Q W, Fang R, et al. Superhydrophobic and corrosion-resistant nickel-based composite coating on magnesium alloy [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 755
黄志凤, 雍奇文, 房 蕊 等. AZ31镁合金表面超疏水耐腐蚀镍基复合涂层 [J]. 中国腐蚀与防护学报, 2023, 43: 755
doi: 10.11902/1005.4537.2023.143
[4] Wang H, Liu Y Y. Research progress in the preparation of anti-corrosion superhydrophobic coatings on magnesium alloys [J]. Surf. Technol., 2023, 52(11): 1
王 华, 刘艳艳. 镁合金表面防腐蚀超疏水涂层制备研究进展 [J]. 表面技术, 2023, 52(11): 1
[5] Zhang Y, Liu W, Liu Y, et al. Research progress on microstructure and mechanical properties of medical rare-earth magnesium alloys [J]. Rare Met. Mater. Eng., 2023, 52: 3065
[6] Gu D D, Han B J, Xu Z. Effect of rare earth La on microstructure and corrosion resistance of AZ91D magnesium alloy [J]. Corros. Prot., 2016, 37: 313
古东懂, 韩宝军, 徐 洲. 稀土镧对AZ91D镁合金组织及耐蚀性的影响 [J]. 腐蚀与防护, 2016, 37: 313
[7] Deng B, Li Q F, Wu Y Z, et al. Effect of the second phase on the corrosion behavior of Mg-Zn-Zr alloy [J]. Mater. Prot., 2021, 54(9): 48
邓 彬, 李庆芬, 吴远志 等. 第二相对Mg-Zn-Zr合金腐蚀行为的影响 [J]. 材料保护, 2021, 54(9): 48
[8] Liu X F, Du W B, Fu J J, et al. Effect of Gd on microstructure and corrosion behavior of Mg-xGd-1Er-1Zn-0.6Zr alloys [J]. J. Mater. Eng., 2022, 50(9): 159
刘雄飞, 杜文博, 付军健 等. Gd对Mg-xGd-1Er-1Zn-0.6Zr合金显微组织和腐蚀行为的影响 [J]. 材料工程, 2022, 50(9): 159
doi: 10.11868/j.issn.1001-4381.2020.001140
[9] Cao F Y, Zhang J, Li K K, et al. Influence of heat treatment on corrosion behavior of hot rolled Mg5Gd alloys [J]. Trans. Nonferrous Met. Soc. China, 2021, 31: 939
[10] Cui Z Y, Xiao K, Dong C F, et al. Long-term corrosion behavior of AZ31 magnesium alloy in Xisha marine atmosphere [J]. Chin. J. Eng., 2014, 36: 339
崔中雨, 肖 葵, 董超芳 等. 西沙严酷海洋大气环境下AZ31镁合金的长周期腐蚀行为 [J]. 北京科技大学学报, 2014, 36: 339
[11] Sun S, Dai J M, Song Y W, et al. Corrosion behavior of extruded EW75 Mg-alloy in Shenyang industrial atmosphere [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 141
孙 硕, 代珈铭, 宋影伟 等. 挤压态EW75稀土镁合金在沈阳工业大气环境中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 141
[12] Zhou J, Xue W, Zhou K N. Research on the impact of storage environment on missile reliability [J]. China Plant Eng., 2024, (2): 221
周 军, 薛 伟, 周康宁. 贮存环境对导弹可靠性影响研究 [J]. 中国设备工程, 2024, (2): 221
[13] Yang Q X, Xuan Z L, Li T P, et al. Analysis for carrier-based aerial ammunition storage environment [J]. J. Ordnance Equip. Eng., 2021, 42(10): 137
杨清熙, 宣兆龙, 李天鹏 等. 舰载航空弹药贮存环境分析 [J]. 兵器装备工程学报, 2021, 42(10): 137
[14] Tang Y, Meng Q L, Ren P. Spatial distribution and concentrations of salt fogs in a coastal urban environment: a case study in Zhuhai city [J]. Build. Environ., 2023, 234: 110156
[15] Li J S, Chen J H, Song J L, et al. Research on corrosion behavior of truck body steel in chlorine-containing sulfuric acid environment [J]. J. Mater. Res. Technol., 2022, 21: 1878
[16] Song Y W, Shan D Y, Han E H. Pitting corrosion of a rare earth Mg alloy GW93 [J]. J. Mater. Sci. Technol., 2017, 33: 954
doi: 10.1016/j.jmst.2017.01.014
[17] Cui Z Y, Li X G, Xiao K, et al. Atmospheric corrosion of field-exposed AZ31 magnesium in a tropical marine environment [J]. Corros. Sci., 2013, 76: 243
[18] Liu M, Schmutz P, Uggowitzer P J, et al. The influence of yttrium (Y) on the corrosion of Mg-Y binary alloys [J]. Corros. Sci., 2010, 52: 3687
[19] Liu J N, Bian D, Zheng Y F, et al. Comparative in vitro study on binary Mg-RE (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) alloy systems [J]. Acta Biomater., 2020, 102: 508
doi: S1742-7061(19)30753-6 pmid: 31722254
[1] PENG Wenshan, XIN Yonglei, WEN Jieping, HOU Jian, SUN Mingxian. Effect of Variable- and Constant-Temperature on Corrosion Behavior of High Strength Steel under Polar Ice Cover[J]. 中国腐蚀与防护学报, 2025, 45(3): 821-826.
[2] BAI Zhengqing, NONG Jing, WEI Shichen, XU Jian. Effect of Pre-charging Hydrogen on Corrosion Behavior of Ni-Cr Alloy in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2025, 45(2): 338-346.
[3] YANG Zhenyu, JI Chao, GUO Liya, XU Run, PENG Wei, ZHAO Hongshan, WEI Xicheng, DONG Han. Initial Corrosion Behavior of Several Pure Irons and Steels in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2025, 45(2): 469-478.
[4] ZHAO Lianhong, WANG Yingqin, LIU Yuanhai, HE Weiping, WANG Haowei. Corrosion Behavior of Four Steels for Landing Gear of Amphibious Aircraft in Simulated Seawater[J]. 中国腐蚀与防护学报, 2024, 44(5): 1263-1273.
[5] DU Guang, LU Guoqiang, DENG Longhui, JIANG Jianing, CAO Xueqiang. Effect of Aluminum Content on Corrosion Behavior of Ni-Al Alloys in Dilute Sulfuric Acid Solution[J]. 中国腐蚀与防护学报, 2024, 44(4): 1011-1021.
[6] WU Yang, AN Yiqiang, WANG Liwei, CUI Zhongyu. Atmospheric Corrosion Behavior of Mg-alloys AZ31B and AZ91D in Simulated Low Temperature Environments[J]. 中国腐蚀与防护学报, 2024, 44(4): 1001-1010.
[7] ZHANG Yunjun, JIANG Youwei, ZHANG Zhongyi, LV Naixin, CHEN Junwei, LIAN Guofeng. Initial Corrosion Behavior of 3Cr Alloy Steel in Urea Assisted Heavy Oil Steam Huff and Puff Environments[J]. 中国腐蚀与防护学报, 2024, 44(2): 480-488.
[8] LENG Wenjun, SHI Xizhao, XIN Yonglei, YANG Yange, WANG Li, CUI Zhongyu, HOU Jian. Correlation of Corrosion Information Aquired by Indoor Acceleration Testing and by Real Low Temperature Marine Atmosphere Exposure in Polar Region for Ni-Cr-Mo-V Steel[J]. 中国腐蚀与防护学报, 2024, 44(1): 91-99.
[9] BAI Xuehan, DING Kangkang, ZHANG Penghui, FAN Lin, ZHANG Huixia, LIU Shaotong. Accelerated Corrosion Test of AH36 Ship Hull Steel in Marine Environment[J]. 中国腐蚀与防护学报, 2024, 44(1): 187-196.
[10] WANG Xiao, LI Ming, LIU Feng, WANG Zhongping, LI Xiangbo, LI Ningwang. Effect of Temperature on Erosion-corrosion Behavior of B10 Cu-Ni Alloy Pipe[J]. 中国腐蚀与防护学报, 2023, 43(6): 1329-1338.
[11] LI Qiang, LU Cheng, TANG Yinghao, TANG Jianfeng, LIU Bingcheng. Localized CO2 Corrosion of X70 Steel in Water Accumulation Zone of Wet Gas Pipelines[J]. 中国腐蚀与防护学报, 2023, 43(4): 837-846.
[12] XING Xuesong, FAN Baitao, ZHU Xinyu, ZHANG Junying, CHEN Changfeng. Corrosion Characteristics of P110SS Casing Steel for Ultra-deep Well in Artificial Formation Water with Low H2S and High CO2 Content[J]. 中国腐蚀与防护学报, 2023, 43(3): 611-618.
[13] ZHOU Zhiping, WU Dakang, ZHANG Hongfu, ZHANG Lei, LI Mingxing, ZHANG Zhixin, ZHONG Xiankang. Tensile Property of L80 Steel in Air at 25-350 ℃ and Its Corrosion Behavior in Simulated Casing Service Conditions at 150-350 ℃[J]. 中国腐蚀与防护学报, 2023, 43(3): 601-610.
[14] WANG Xiao, LIU Feng, LI Yan, ZHANG Wei, LI Xiangbo. Corrosion Behavior of B10 Cu-Ni Alloy Pipe in Static and Dynamic Seawater[J]. 中国腐蚀与防护学报, 2023, 43(1): 119-126.
[15] LI Han, LIU Yuanhai, ZHAO Lianhong, CUI Zhongyu. Corrosion Behavior of 300M Ultra High Strength Steel in Simulated Marine Environment[J]. 中国腐蚀与防护学报, 2023, 43(1): 87-94.
No Suggested Reading articles found!