Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (3): 739-746    DOI: 10.11902/1005.4537.2024.204
Current Issue | Archive | Adv Search |
Chemical Decontamination Process for Main Pump of Hualong One PWR
ZHANG Dingwen1, ZHANG Jilan1, YU Yijun1, REN Ke1, DING Qiang1, SHI Huimei1, YANG Xinhui1, WANG Yuanwei1, ZHANG Xuefeng1, WU Duodong1, LIU Feng2, FENG Xingyu3, LIU Pengshuai4, KUANG Wenjun3,4()
1.Huaneng Hainan Changjiang Nuclear Power Co., Ltd., Changjiang 572733, China
2.Xi'an Thermal Power Research Institute Co., Ltd., Xi'an 710054, China
3.School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
4.School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
Cite this article: 

ZHANG Dingwen, ZHANG Jilan, YU Yijun, REN Ke, DING Qiang, SHI Huimei, YANG Xinhui, WANG Yuanwei, ZHANG Xuefeng, WU Duodong, LIU Feng, FENG Xingyu, LIU Pengshuai, KUANG Wenjun. Chemical Decontamination Process for Main Pump of Hualong One PWR. Journal of Chinese Society for Corrosion and protection, 2025, 45(3): 739-746.

Download:  HTML  PDF(14116KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The radioactive decontamination of the primary circuit components of the pressurized water reactors (PWRs) is an important process during the overhaul of the nuclear power plant. The effective removal of activated corrosion products on the surface of structural components is directly related to the safety of maintenance personnel. Herein, the X3CrNiMo13-4 steel, used in the main coolant circulating pump of Hualong One PWR, was oxidized in an autoclave to form a pre-oxide scale, as a simulation of the oxide scale formed on its surface in the PWR. Then the influence of the composition of decontamination solution and the process parameter on the removal effectiveness of the simulated oxide scale was compared and analyzed, meanwhile the possible deterioration effect of the decontamination process on the steel matrix was also evaluated using scanning electron microscopy (SEM). The results show that the simulated oxide scale can be effectively removed through alternative treatments of citric acid + DTPA solution cleaning and acidic potassium permanganate oxidation. Compared with alkaline potassium permanganate, the acid potassium permanganate solution has a better removal effect on the corrosion products of the X3CrNiMo13-4 steel without damaging the alloy steel matrix.

Key words:  pressurized water reactors      primary loop      oxide      decontamination process     
Received:  09 July 2024      32134.14.1005.4537.2024.204
ZTFLH:  TG174  
Fund: Technology Project of Huaneng Group(HNKJ21-HF329)
Corresponding Authors:  KUANG Wenjun, E-mail: 20241150@scut.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.204     OR     https://www.jcscp.org/EN/Y2025/V45/I3/739

Fig.1  Schematic of the sample used for oxidation test
NumberSolution and implementation timeProcess steps (PS)
12.0% Citric acid + 0.1% Sodium Ascorbate, 24 h-
21.5% Citric acid + 0.5%DTPA + 0.1% Sodium Ascorbate, 24 h-
3①1.5%HNO3 + 1.5%KMnO4, 4 h①→②→①→②→①→②
②1.5% Citric acid + 0.5%DTPA + 0.1% Sodium Ascorbate, 4 h
4①1.5% Citric acid + 0.5%DTPA + 0.1% Sodium Ascorbate, 4 h①→②→①→②→①
②1.5%HNO3 + 1.5%KMnO4, 4 h
5①1.5% Citric acid +0.5%DTPA + 0.1% Sodium Ascorbate, 4 h①→②→①→②→①
②1.5%NaOH + 1.5%KMnO4, 4 h
6①2.0% Citric acid + 0.1% Sodium Ascorbate, 4 h①→②→①→②→①
②1.5%HNO3 + 1.5%KMnO4, 4 h
Table 1  The chemical decontamination process and implementation steps
Fig.2  SEM image of X3CrNiMo13-4 surface oxide film (a) and EDS maps of Fig.2a (b-d)
Fig.3  Cross-sectional morphology of oxide film on X3CrNiMo13-4
Fig.4  Surface morphologies of samples before and after the implementation of process 1 and 2 (a) and color change of solution after decontamination process 1 and 2 (b)
Fig.5  The changes in the macroscopic morphology of sample during the implementation of process 3
Fig.6  The changes in the macroscopic morphology of sample during the implementation of process 4
Fig.7  The changes in the macroscopic morphology of sample during the implementation of process 5
Fig.8  The changes in the macroscopic morphology of samples during the implementation of process 6
Fig.9  The changes in concentrations of Fe (a) and Cr (b) ions in citric acid solutions for process 4 and 6
Fig.10  SEM image after the implementation of process 4
Fig.11  The element distribution in depth direction of the sample surface after the implementation of process 4
Fig.12  The optical microscopic photos of the sample surface before (a) and after (b) the implementation of process 4
[1] Ji Y F, Hao L, Wang J Q, et al. Research progress on compatibility between alkalizing agents and materials in PWR secondary circuit [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 267
冀跃飞, 郝 龙, 王俭秋 等. 压水堆二回路碱化剂与材料的相容性研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 267
[2] Gao J W, Xue N, Qiu L, et al. Enlightenment of three serious nuclear accidents to the development of pressurized water reactor in China [J]. China Nucl. Power, 2023, 16: 907
高健伟, 薛 娜, 邱 林 等. 三次严重事故对中国压水堆核电发展的启示 [J]. 中国核电, 2023, 16: 907
[3] Fan M D. Reliability evaluation of control rod drive mechanism penetration nozzle and hold down spring of pressurized water reactor considering service environment [D]. Hefei: University of Science and Technology of China, 2023
范牡丹. 考虑服役环境的压水堆控制棒驱动机构贯穿喷嘴和压紧弹簧可靠性评估 [D]. 合肥: 中国科学技术大学, 2023
[4] Liu B, Li X M, Song L J, et al. Development of in-service chemical decontamination technologies for PWR NPPs [J]. Radiat. Prot. Bull., 2015, 35(2): 16
刘 斌, 李新民, 宋利君 等. 压水堆核电站在役化学去污工艺进展 [J]. 辐射防护通讯, 2015, 35(2): 16
[5] Liu B, Li X M, Song L J, et al. Chemical decontamination of primary loop elbow and verification test in nuclear power plant [J]. J. Nucl. Radiochem., 2018, 40: 388
刘 斌, 李新民, 宋利君 等. 核电厂主回路弯头化学去污及验证试验 [J]. 核化学与放射化学, 2018, 40: 388
[6] Kenchiku I, translated by Zuo M, Li X Q. Decontamination Technology of Nuclear Facilities [M]. Beijing: Atomic Energy Press, 1997
石榑显吉著, 左民, 李学群 译. 核设施去污技术 [M]. 北京: 原子能出版社, 1997
[7] Fu D F. Preparation of low temperature decontamination agent and study on its decontamination characteristics to simulated radioactive pollution [D]. Mianyang: Southwest University of Science and Technology, 2020
付登峰. 低温去污剂的制备及其对模拟放射性污染的去污特性研究 [D]. 绵阳: 西南科技大学, 2020
[8] Homonnay Z, Kuzmann E, Varga K, et al. Comprehensive investigation of the corrosion state of the heat exchanger tubes of steam generators. Part II. Chemical composition and structure of tube surfaces [J]. J. Nucl. Mater., 2006, 348: 191
[9] USEPA. Technology reference guide for radiologically contaminated surfaces [R]. Washington: USEPA, 2006
[10] Steinkuhler C, Lenie K, Coomans R. Experience in chemical decontamination of PWR systems and components [A]. Proceedings of the 12th International Conference on Environmental Remediation and Radioactive Waste Management [C]. Liverpool, 2009: 93
[11] Velmurugan S, Rufus A L, Sathyaseelan V S, et al. Experience with dilute chemical decontamination in Indian pressurized heavy water reactors [J]. Energy Procedia, 2011, 7: 645
[12] Yang I J, Teng M Y, Huan W I, et al. Decontamination of the reactor coolant pump in Maanshan nuclear power plant [J]. Nucl. Eng. Des., 1996, 167: 91
[13] Wu Q, Wang C, Zhang J B, et al. Study of martensite stainless-steel of charging pump decontamination [J]. Radiat. Prot., 2009, 29: 50
邬 强, 王 川, 张建博 等. 马氏体不锈钢上充泵的去污研究 [J]. 辐射防护, 2009, 29: 50
[14] Wu Q, Wang C. Application and discussion of charging pump decontamination for pressurized water reactor nuclear power station [J]. At. Energy Sci. Technol., 2009, 43: 174
邬 强, 王 川. 压水堆核电站上充泵的去污实践及其理论探讨 [J]. 原子能科学技术, 2009, 43: 174
[15] Wu Q, Cui H L, Wang C. Study on application of joint decontamination technology in nuclear power plant [J]. Appl. Chem. Ind., 2007, 36: 90
邬 强, 崔慧玲, 王 川. 超声波-化学去污工艺在核电厂的应用研究 [J]. 应用化工, 2007, 36: 90
[16] Zhu M S, Chen D W, Yang H R, et al. Optimization and analysis of main coolant pump decontamination schemes in Tianwan nuclear power station [J]. Radiat. Prot., 2010, 30: 181
朱明山, 陈大武, 杨浩然 等. 田湾核电站主泵检修去污方案的优化选择和分析 [J]. 辐射防护, 2010, 30: 181
[17] Zhang C. The Application of chemical-ultrasonic-decontamination to RCP Inner Part [J]. Radiat. Prot. Bull., 2012, 32(4): 29
张 驰. 化学-超声波联合去污法在主泵内插件上的应用 [J]. 辐射防护通讯, 2012, 32(4): 29
[18] Kinnunen P. ANTIOXI-Decontamination techniques for activity removal in nuclear environments [R]. Brussels: European Commission, 2008
[1] ZHAO Fei, WANG Dongwei, GUO Quanzhong, WANG Chuan. Performance of RGO-CNTs Hybrid Material Modified RuO2-IrO2-SnO2/Ti Anode[J]. 中国腐蚀与防护学报, 2025, 45(3): 787-794.
[2] ZHANG Yongkang, ZHAI Haimin, LI Xuqiang, LI Wensheng. Hot Corrosion Behavior of Fe-based Amorphous Coatings in Mixed Salts of Na2SO4 + K2SO4 and Na2SO4 + NaCl[J]. 中国腐蚀与防护学报, 2025, 45(1): 92-102.
[3] DONG Ziye, WU Yiheng, LU Chong, SHEN Zhao, ZENG Xiaoqin. Research Progress in Metallic Interconnectors for Solid Oxide Fuel Cells (SOFCs)[J]. 中国腐蚀与防护学报, 2025, 45(1): 46-60.
[4] SUN Qiongqiong, JIA Xiquan, XU Zhenlin, HE Yizhu, FAN Guangwei, ZHANG Wei, LI Huan. Structure and Adhesion of Oxide Scales on Casting Billet of 304 and 430 Stainless Steels[J]. 中国腐蚀与防护学报, 2024, 44(6): 1649-1655.
[5] WANG Bihui, LIU Ju, CUI Zhixiang, XIAO Bo, YANG Tianrang, ZHANG Naiqiang. Long-term Stability of MnCo Spinel Coatings Prepared by Electrophoretic Deposition at High Temperatures[J]. 中国腐蚀与防护学报, 2024, 44(4): 972-978.
[6] LI Hongling, LANG Wuke. Environmentally Friendly Anticorrosive Materials-Preparation and Research Progress of Polyaniline Nanocomposites[J]. 中国腐蚀与防护学报, 2024, 44(4): 874-882.
[7] ZHU Huiwen, ZHENG Li, ZHANG Hao, YU Baoyi, CUI Zhibo. Effect of Be on Oxidation Behavior and Flame Retardancy of WE43 Mg-alloy at High-temperature[J]. 中国腐蚀与防护学报, 2024, 44(4): 1022-1028.
[8] YUAN Xiaohu, LI Dingjun, WANG Tianjian, GUO Xianping, ZHANG Naiqiang, ZHU Zhongliang. Oxidation Behavior of Three Different Ni-Cr Coatings in 630oC/25 MPa Supercritical Water[J]. 中国腐蚀与防护学报, 2024, 44(1): 119-129.
[9] LI Danhong, YANG Tengxun, SUN Tianxiang, LI Xinglinmao, MA Chengcheng, ZHANG Yue, CHEN Shougang. Preparation and Anti-corrosion Properties of Silica Aerogel-modified Polyurethane Composite Coatings[J]. 中国腐蚀与防护学报, 2024, 44(1): 167-174.
[10] ZHU Yesen, CAI Kun, HU Baowen, XIA Yunqiu, HU Taoyong, HUANG Yi. Research Progress on Characteristics and Prediction Models of Carbon Dioxide Induced Corrosion for Submarine Pipelines[J]. 中国腐蚀与防护学报, 2023, 43(6): 1225-1236.
[11] GU Yuhui, DONG Liang, SONG Qinfeng. Preparation of Micro Metal Oxide pH Electrode and Its Application in Corrosion and Protection[J]. 中国腐蚀与防护学报, 2023, 43(5): 971-982.
[12] WANG Junyang, YI Gewen, WAN Shanhong, JIANG Jun. Research Progress on Structural Evolution and Applied Control Technology of Oxide Scale on Hot Rolled Steel Surface[J]. 中国腐蚀与防护学报, 2023, 43(5): 948-956.
[13] HU Qian, GAO Jiayi, GUO Ruisheng, SHI Junqin, WANG Xianzong. Long-term Corrosion of Lubricant Infused Surface with Micro-nano Structures on Anodized Aluminum Oxide[J]. 中国腐蚀与防护学报, 2023, 43(4): 773-780.
[14] WU Jiahao, WU Liang, YAO Wenhui, YUAN Yuan, XIE Zhihui, WANG Jingfeng, PAN Fusheng. Properties of Layered Dihydroxyl Metal (MgAlLa) Oxide Composite Coatings on Different Micro-arc Oxidation Surfaces of Mg-Gd-Y-Zn-Mn Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 693-703.
[15] GUO Tao, HUANG Feng, HU Qian, LIU Jing. Oxidation Kinetics of 9Ni Steel Billet at High Temperature[J]. 中国腐蚀与防护学报, 2023, 43(4): 882-889.
No Suggested Reading articles found!