Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (5): 1331-1340    DOI: 10.11902/1005.4537.2024.387
Current Issue | Archive | Adv Search |
Effect of Sensitization Treatment on Electrochemical Behavior and Intergranular Corrosion of Conventional and Additively Manufactured 316L Stainless Steels
HE Wuhao1, LIU Yang2, YANG Siyi2, ZHANG Shaodong3, WU Wei2,3,4(), ZHANG Junxi2
1 School of Mechanical and Vehicle Engineering, Nanchang Institute of Science & Technology, Nanchang 330108, China
2 Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, School of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 201306, China
3 Jiangxi Hengda Hi-Tech Co., Ltd., Nanchang 330096, China
4 School of Physics and Materials, Nanchang University, Nanchang 330031, China
Cite this article: 

HE Wuhao, LIU Yang, YANG Siyi, ZHANG Shaodong, WU Wei, ZHANG Junxi. Effect of Sensitization Treatment on Electrochemical Behavior and Intergranular Corrosion of Conventional and Additively Manufactured 316L Stainless Steels. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1331-1340.

Download:  HTML  PDF(17475KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The pitting corrosion resistance and intergranular corrosion (IGC) sensitivity of conventional and selective laser melted (SLM) 316L austenitic stainless steels were comparatively assessed via electrochemical measurements, microstructure analysis, and various characterization methods. The results indicate that both the as received conventional and SLM 316L stainless steel exhibit similar pitting corrosion resistance and low intergranular corrosion sensitivity. However after being subjected to sensitization treatment, the types of 316L stainless steel present varying degrees of reduction in the pitting potential, and with the increasing sensitization time, the SLM 316L stainless steel shows significantly lower pitting corrosion resistance than the conventional 316L stainless steel. Additionally, after sensitization treated, the IGC sensitivity of both types of 316L stainless steel increases, with the conventional 316L stainless steel showing a faster growth rate in IGC sensitivity as the sensitization time extends. Micromorphology and compositional analysis indicate that preferential dissolution occur along inclusions or carbides both intergranularly and within the grains. This shows that the difference in electrochemical properties between the two stainless steels is directly related to their different microstructures.

Key words:  additive manufacturing      austenitic stainless steel      potentiodynamic polarization      EIS      intergranular corrosion     
Received:  28 November 2024      32134.14.1005.4537.2024.387
ZTFLH:  TG172  
Fund: Science and Technology Research Project of Jiangxi Provincial Department of Education(GJJ2202904)
Corresponding Authors:  WU Wei, E-mail: wuweicorr@shiep.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.387     OR     https://www.jcscp.org/EN/Y2025/V45/I5/1331

Fig.1  IPF maps of conventional (a1-e1) and SLM (a2-e2) 316L stainless steel after sensitization for 0 (a), 0.5 (b), 1 (c), 4 (d) and 10 h (e)
Fig.2  TEM morphologies of conventional (a, b) and SLM (c, d) 316L stainless steel after sensitization for 0 (a, c) and 10 h (b, d)
Fig.3  Potentiodynamic polarization curves of conventional (a) and SLM (b) 316L stainless steel
Fig.4  Pitting potential (a) and corrosion potential (b) vs. time curves of conventional and SLM 316L stainless steel
Fig.5  Nyquist plots (a, c) and Bode plots (b, d) of conventional (a, b) and SLM (c, d) 316L stainless steel
Fig.6  Equivalent circuit (a) of EIS curves for conventional and SLM 316L stainless steel and corresponding fitting values of Rf + Rct (b)
Fig.7  Potential versus current density curves obtained from DL-EPR tests for conventional (a) and SLM (b) 316L stainless steel
Fig.8  DOS values of conventional and SLM 316L stainless steel after sensitization for different time
Fig.9  Surface morphologies of conventional 316L stainless steel after sensitization for 0 h (a), 0.5 h (b), 1 h (c), 4 h (d) and 10 h (e) after DL-EPR test
Fig.10  EDS analysis of the marked points 1 (a), 2 (b), 3 (c) and 4 (d) in Fig.9e for conventional 316L stainless steel after sensitization for 10 h and DL-EPR test
Fig.11  Surface morphologies of SLM 316L stainless steel after DL-EPR tests with the sensitization time of 0 h (a), 0.5 h (b), 1 h (c), 4 h (d) and 10 h (e)
[1] Liu W, Ren Z L, Wang G, et al. A-TIG weld shaping and joint mechanical properties of austenitic stainless steel [J]. Trans. China Weld. Inst., 2024, 45(10): 105
刘 伟, 任泽良, 王 刚 等. 奥氏体不锈钢A-TIG焊缝成形及接头力学性能 [J]. 焊接学报, 2024, 45(10): 105
[2] Li M Y, Dong Z P, Kang D M, et al. Analysis of residual stress of austenitic stainless steel heat exchange tube expansion [J]. Petro-Chem. Equip., 2024, 53(5): 38
李明远, 董中鹏, 康东明 等. 奥氏体不锈钢换热管胀接残余应力分析 [J]. 石油化工设备, 2024, 53(5): 38
[3] Sun X G, Han X H, Zhang X S, et al. Corrosion resistance and environmentally-friendly chemical passivation of welded joints for ultra-low carbon austenitic stainless steel [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 345
孙晓光, 韩晓辉, 张星爽 等. 超低碳奥氏体不锈钢焊接接头耐腐蚀性及环保型化学钝化工艺研究 [J]. 中国腐蚀与防护学报, 2019, 39: 345
doi: 10.11902/1005.4537.2019.054
[4] Geng Z Z, Zhang Y Z, Du X J, et al. Synergistic effect of S2- and Cl- on corrosion and passivation behavior of 316L austenitic stainless steel [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 797
耿真真, 张钰柱, 杜小将 等. S2-和Cl-对316L奥氏体不锈钢的腐蚀钝化行为的协同作用 [J]. 中国腐蚀与防护学报, 2024, 44: 797
doi: 10.11902/1005.4537.2023.236
[5] Tao X, Qi J H, Rainforth M, et al. On the interstitial induced lattice inhomogeneities in nitrogen-expanded austenite [J]. Scrip. Mater., 2020, 185: 146
[6] Li C, Wang Q T, Yang C G, et al. Corrosion behavior of 904L super-austenitic stainless steel in simulated primary water in nuclear power plants [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 716
李 禅, 王庆田, 杨承刚 等. 904L超级奥氏体不锈钢在模拟核电一回路环境中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 716
[7] Liu J, Li X L, Zhu C W, et al. Prediction of critical pitting temperature of 316L stainless steel in gas field environments by artificial neutral network [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 205
刘 静, 李晓禄, 朱崇伟 等. 利用人工神经网络技术预测气田环境下316L不锈钢临界点蚀温度 [J]. 中国腐蚀与防护学报, 2016, 36: 205
[8] Gao J X, Cao H, Kuang W J, et al. Research progress on irradiation assisted stress corrosion cracking behavior and mechanism of austenitic steel [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 835
高俊宣, 曹 晗, 匡文军 等. 奥氏体钢辐照促进应力腐蚀开裂行为机制的研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 835
doi: 10.11902/1005.4537.2023.287
[9] Liang Z Y, Xu Y M, Wang S, et al. Corrosion behavior of heat-resistant alloys in high temperature CO2 environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 613
梁志远, 徐一鸣, 王 硕 等. 高等级合金CO2环境下的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 613
doi: 10.11902/1005.4537.2021.210
[10] Kolli S, Javaheri V, Ohligschläger T, et al. The importance of steel chemistry and thermal history on the sensitization behavior in austenitic stainless steels: Experimental and modeling assessment [J]. Mater. Today Commun., 2020, 24: 101088
[11] Qian J, Chen C F, Yu H B, et al. The influence and the mechanism of the precipitate/austenite interfacial C-enrichment on the intergranular corrosion sensitivity in 310 S stainless steel [J]. Corros. Sci., 2016, 111: 352
[12] Wang J X, Shi W, Xiang S, et al. Study of the corrosion behaviour of sensitized 904L austenitic stainless steel in Cl- solution [J]. Corros. Sci., 2021, 181: 109234
[13] Congleton J, Yang W. The effect of applied potential on the stress corrosion cracking of sensitized type 316 stainless steel in high temperature water [J]. Corros. Sci., 1995, 37: 429
[14] Abduluyahed A A, Rożniatowski K, Kurzydłowski K J. Free surface contribution to sensitization of an austenitic stainless steel [J]. J. Mater. Process. Technol., 2001, 109(1): 2
[15] Srinivasan N, Kain V, Birbilis N, et al. Near boundary gradient zone and sensitization control in austenitic stainless steel [J]. Corros. Sci., 2015, 100: 544
[16] Barla N A, Ghosh P K, Das S, et al. Simulated stress-induced sensitization study for the heat-affected zone of the 304LN stainless steel weld using a thermomechanical simulator [J]. Metall. Mater. Trans., 2019, 50A: 1283
[17] Lewis A C, Bingert J F, Rowenhorst D J, et al. Two- and three-dimensional microstructural characterization of a super-austenitic stainless steel [J]. Mater. Sci. Eng., 2006, 418A: 11
[18] Peckner D, Bernstein I M. Handbook of Stainless Steels [M]. New York: McGraw-Hill Company, 1977
[19] Yao X Z, Li H J, Yang Z W, et al. Tailoring the microstructure and mechanical properties of wire arc additive manufactured Ti-6Al-4V alloy by trace TiC powder addition [J]. Trans. China Weld. Inst., 2024, 45(6): 12
姚兴中, 李会军, 杨振文 等. 微量TiC粉末合金化改善电弧增材制造Ti-6Al-4V合金的组织和性能 [J]. 焊接学报, 2024, 45(6): 12
[20] Shang Q, Man C, Pang K, et al. Mechanism of post-heat treatment on intergranular corrosion behavior of SLM-316L stainless steel with different carbon contents [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1273
商 强, 满 成, 逄 昆 等. 后热处理对不同含碳量SLM-316L不锈钢晶间腐蚀行为的作用机制研究 [J]. 中国腐蚀与防护学报, 2023, 43: 1273
[21] Duan Z W, Man C, Dong C F, et al. Pitting behavior of SLM 316L stainless steel exposed to chloride environments with different aggressiveness: pitting mechanism induced by gas pores [J]. Corros. Sci., 2020, 167: 108520
[22] Shi H C, Huang A M, Huang H, 30 Study on microstructure and fracture toughness of welded joint of CrMo/Q420qE high performance bridge steel [J]. Metal Mater. Metall. Eng., 2024, 52(6): 12
石红昌, 黄安明, 黄 辉. 30CrMo/Q420qE桥梁钢焊接接头显微组织及断裂韧性研究 [J]. 金属材料与冶金工程, 2024, 52(6): 12
[23] Revilla R I, Van Calster M, Raes M, et al. Microstructure and corrosion behavior of 316L stainless steel prepared using different additive manufacturing methods: a comparative study bringing insights into the impact of microstructure on their passivity [J]. Corros. Sci., 2020, 176: 108914
[24] Kong D C. Cellular dislocation structure effects on the strength, toughness and corrosion resistance of selective laser melted 316L stainless steel [D]. Beijing: University of Science and Technology Beijing, 2022
孔德成. 胞状位错结构对激光选区熔化316L不锈钢强韧性的影响与耐蚀机理研究 [D]. 北京: 北京科技大学, 2022
[25] Zhang X Q, Li Y P, Tang N, et al. Corrosion behaviour of CoCrMo alloys in 2wt% sulphuric acid solution [J]. Electrochim. Acta, 2014, 125: 543
[26] Liu G M, Liu Y Y, Cheng Y W, et al. The intergranular corrosion susceptibility of metastable austenitic Cr-Mn-Ni-N-Cu high-strength stainless steel under various heat treatments [J]. Materials, 2019, 12: 1385
[27] Dai H L, Zhang S Y, Li Y J, et al. Stress corrosion cracking behavior of 316 L manufactured by different additive manufacturing techniques in hydrofluoric acid vapor [J]. J. Mater. Sci. Technol., 2024, 191: 33
[28] Zhang T Y, Wu J S, Guo H L, et al. Influence of HSO 3 - on passive film composition and corrosion resistance of 2205 duplex stainless steel in simulated seawater [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 535
张天翼, 吴俊升, 郭海龙 等. 模拟海水中HSO 3 - 对2205双相不锈钢钝化膜成分及耐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2016, 36: 535
doi: 10.11902/1005.4537.2016.190
[29] Chen Y, Chen X, Liu T, et al. Effect of potential on electrochemical corrosion behavior of 316L stainless steel in borate buffer solution [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 137
陈 宇, 陈 旭, 刘 彤 等. 成膜电位对316L不锈钢在硼酸溶液中电化学行为的影响 [J]. 中国腐蚀与防护学报, 2015, 35: 137
[30] Qiang S M, Jiang L Z, Li J, et al. Evaluation of intergranular corrosion susceptibility of 11Cr ferritic stainless steel by DL-EPR method [J]. Acta Metall. Sin., 2015, 51: 1349
doi: 10.11900/0412.1961.2015.00117
强少明, 江来珠, 李 劲 等. 双环电化学动电位再活化法评价11Cr铁素体不锈钢晶间腐蚀敏感性 [J]. 金属学报, 2015, 51: 1349
[31] Bunchoo N, Wongpinkaew K, Kukiatkulchai E, et al. Effects of thermal history on sensitization behavior and Charpy impact property of type 316L and 316 stainless steels for applications in a fired heater [J]. Eng. Fail. Anal., 2022, 141: 106672
[1] GUO Yujie, LI Yanhui, XIA Da-Hai, HU Wenbin. Data Analysis and Physical Model of Electrochemical Impedance Spectroscopy for Corrosion Systems: Progresses and Challenges[J]. 中国腐蚀与防护学报, 2025, 45(5): 1143-1160.
[2] DING Zhichao, ZHANG Shuguo, XIAO Xiaochun, WANG Di, LI Wenjie, JIANG Lihong. Intergranular Corrosion Behavior of Friction Stir Welded Joints of Semi-solid 7075 Al-alloy[J]. 中国腐蚀与防护学报, 2025, 45(4): 1089-1097.
[3] LEI Tao, CHEN Shaogao, LIU Xiuli, FAN Jinlong, ZHENG Xingwen. Corrosion Behavior of Laser Additive Manufacturing AlSi10Mg Al-alloy in Ethylene Glycol Coolant and Detection of Coolant Degradation[J]. 中国腐蚀与防护学报, 2025, 45(4): 1014-1024.
[4] ZHANG Huiyun, ZHENG Liuwei, LIANG Wei. Effect of Annealing Process on Microstructure Evolution and Hydrogen Embrittlement Behavior of 304 Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2025, 45(2): 438-448.
[5] GUO Jingbo, YANG Shouhua, ZHOU Ziyi, MU Rende, XIE Yun, SHU Xiaoyong, DAI Jianwei, PENG Xiao. High-temperature Oxidation Behavior of Laser Additively Manufactured AlCoCrFeNiSi High Entropy Alloy[J]. 中国腐蚀与防护学报, 2025, 45(1): 217-223.
[6] MA Jinyao, DONG Nan, GUO Zhensen, HAN Peide. Effect of B and Ce Micro-alloying on Secondary Phase Precipitation and Corrosion Resistance of S31254 Super Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2024, 44(6): 1610-1616.
[7] XU Guizhi, DU Xiaoze, HU Xiao, SONG Jie. Effect of Pt Coating on Electrochemical Behavior and Interfacial Conductivity of TA4 Bipolar Plate in Anode Side Environment of Proton Exchange Membrane Water Electrolyzer for Hydrogen Production[J]. 中国腐蚀与防护学报, 2024, 44(5): 1370-1376.
[8] DU Xin, DU Qian, SU Zhengxiong, GUO Shaoqiang, WANG Sheng. Intergranular Corrosion of High Temperature Ni-based Alloy GH3535 Induced by Fission Product Tellurium[J]. 中国腐蚀与防护学报, 2024, 44(5): 1157-1163.
[9] LI Chan, WANG Qingtian, YANG Chenggang, ZHANG Xianwei, HAN Dongao, LIU Yuwei, LIU Zhiyong. Corrosion Behavior of 904L Super-austenitic Stainless Steel in Simulated Primary Water in Nuclear Power Plants[J]. 中国腐蚀与防护学报, 2024, 44(3): 716-724.
[10] GENG Zhenzhen, ZHANG Yuzhu, DU Xiaojiang, WU Hanhui. Synergistic Effect of S2- and Cl- on Corrosion and Passivation Behavior of 316L Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2024, 44(3): 797-806.
[11] FU Jiangyue, GUO Jianxi, YANG Yange, LENG Zhe, WANG Wen. Erosion-corrosion Behavior of a High Strength Low Alloy Steel in Flowing 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2024, 44(3): 585-600.
[12] WANG Zhihui, WU Lei, JIANG Yishan, ZHANG Xian, WAN Xiangliang, LI Guangqiang, WU Kaiming. Effect of Deformation Strengthening and Phase Reversion Grain Refinement Strengthening on Corrosion Resistance of Fe-18Cr-8Ni Steel[J]. 中国腐蚀与防护学报, 2024, 44(2): 429-436.
[13] SHANG Qiang, MAN Cheng, PANG Kun, CUI Zhongyu, DONG Chaofang, CUI Hongzhi. Mechanism of Post-heat Treatment on Intergranular Corrosion Behavior of SLM-316L Stainless Steel with Different Carbon Contents[J]. 中国腐蚀与防护学报, 2023, 43(6): 1273-1283.
[14] LUO Weihua, WANG Haitao, YU Lin, XU Shi, LIU Zhaoxin, GUO Yu, WANG Tingyong. Effect of Zn Content on Electrochemical Properties of Al-Zn-In-Mg Sacrificial Anode Alloy[J]. 中国腐蚀与防护学报, 2023, 43(5): 1071-1078.
[15] MAO Feixiong, ZHOU Yuting, YAO Wenqing, SHEN Xiang, XIAO Long, LI Minghui. Growth Kinetics of Steady-state Passive Film on Type 304 Stainless Steel Based on Point Defect Model[J]. 中国腐蚀与防护学报, 2023, 43(4): 911-921.
No Suggested Reading articles found!