|
|
Effect of Sensitization Treatment on Electrochemical Behavior and Intergranular Corrosion of Conventional and Additively Manufactured 316L Stainless Steels |
HE Wuhao1, LIU Yang2, YANG Siyi2, ZHANG Shaodong3, WU Wei2,3,4( ), ZHANG Junxi2 |
1 School of Mechanical and Vehicle Engineering, Nanchang Institute of Science & Technology, Nanchang 330108, China 2 Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, School of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 201306, China 3 Jiangxi Hengda Hi-Tech Co., Ltd., Nanchang 330096, China 4 School of Physics and Materials, Nanchang University, Nanchang 330031, China |
|
Cite this article:
HE Wuhao, LIU Yang, YANG Siyi, ZHANG Shaodong, WU Wei, ZHANG Junxi. Effect of Sensitization Treatment on Electrochemical Behavior and Intergranular Corrosion of Conventional and Additively Manufactured 316L Stainless Steels. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1331-1340.
|
Abstract The pitting corrosion resistance and intergranular corrosion (IGC) sensitivity of conventional and selective laser melted (SLM) 316L austenitic stainless steels were comparatively assessed via electrochemical measurements, microstructure analysis, and various characterization methods. The results indicate that both the as received conventional and SLM 316L stainless steel exhibit similar pitting corrosion resistance and low intergranular corrosion sensitivity. However after being subjected to sensitization treatment, the types of 316L stainless steel present varying degrees of reduction in the pitting potential, and with the increasing sensitization time, the SLM 316L stainless steel shows significantly lower pitting corrosion resistance than the conventional 316L stainless steel. Additionally, after sensitization treated, the IGC sensitivity of both types of 316L stainless steel increases, with the conventional 316L stainless steel showing a faster growth rate in IGC sensitivity as the sensitization time extends. Micromorphology and compositional analysis indicate that preferential dissolution occur along inclusions or carbides both intergranularly and within the grains. This shows that the difference in electrochemical properties between the two stainless steels is directly related to their different microstructures.
|
Received: 28 November 2024
32134.14.1005.4537.2024.387
|
|
Fund: Science and Technology Research Project of Jiangxi Provincial Department of Education(GJJ2202904) |
Corresponding Authors:
WU Wei, E-mail: wuweicorr@shiep.edu.cn
|
[1] |
Liu W, Ren Z L, Wang G, et al. A-TIG weld shaping and joint mechanical properties of austenitic stainless steel [J]. Trans. China Weld. Inst., 2024, 45(10): 105
|
|
刘 伟, 任泽良, 王 刚 等. 奥氏体不锈钢A-TIG焊缝成形及接头力学性能 [J]. 焊接学报, 2024, 45(10): 105
|
[2] |
Li M Y, Dong Z P, Kang D M, et al. Analysis of residual stress of austenitic stainless steel heat exchange tube expansion [J]. Petro-Chem. Equip., 2024, 53(5): 38
|
|
李明远, 董中鹏, 康东明 等. 奥氏体不锈钢换热管胀接残余应力分析 [J]. 石油化工设备, 2024, 53(5): 38
|
[3] |
Sun X G, Han X H, Zhang X S, et al. Corrosion resistance and environmentally-friendly chemical passivation of welded joints for ultra-low carbon austenitic stainless steel [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 345
|
|
孙晓光, 韩晓辉, 张星爽 等. 超低碳奥氏体不锈钢焊接接头耐腐蚀性及环保型化学钝化工艺研究 [J]. 中国腐蚀与防护学报, 2019, 39: 345
doi: 10.11902/1005.4537.2019.054
|
[4] |
Geng Z Z, Zhang Y Z, Du X J, et al. Synergistic effect of S2- and Cl- on corrosion and passivation behavior of 316L austenitic stainless steel [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 797
|
|
耿真真, 张钰柱, 杜小将 等. S2-和Cl-对316L奥氏体不锈钢的腐蚀钝化行为的协同作用 [J]. 中国腐蚀与防护学报, 2024, 44: 797
doi: 10.11902/1005.4537.2023.236
|
[5] |
Tao X, Qi J H, Rainforth M, et al. On the interstitial induced lattice inhomogeneities in nitrogen-expanded austenite [J]. Scrip. Mater., 2020, 185: 146
|
[6] |
Li C, Wang Q T, Yang C G, et al. Corrosion behavior of 904L super-austenitic stainless steel in simulated primary water in nuclear power plants [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 716
|
|
李 禅, 王庆田, 杨承刚 等. 904L超级奥氏体不锈钢在模拟核电一回路环境中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 716
|
[7] |
Liu J, Li X L, Zhu C W, et al. Prediction of critical pitting temperature of 316L stainless steel in gas field environments by artificial neutral network [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 205
|
|
刘 静, 李晓禄, 朱崇伟 等. 利用人工神经网络技术预测气田环境下316L不锈钢临界点蚀温度 [J]. 中国腐蚀与防护学报, 2016, 36: 205
|
[8] |
Gao J X, Cao H, Kuang W J, et al. Research progress on irradiation assisted stress corrosion cracking behavior and mechanism of austenitic steel [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 835
|
|
高俊宣, 曹 晗, 匡文军 等. 奥氏体钢辐照促进应力腐蚀开裂行为机制的研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 835
doi: 10.11902/1005.4537.2023.287
|
[9] |
Liang Z Y, Xu Y M, Wang S, et al. Corrosion behavior of heat-resistant alloys in high temperature CO2 environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 613
|
|
梁志远, 徐一鸣, 王 硕 等. 高等级合金CO2环境下的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 613
doi: 10.11902/1005.4537.2021.210
|
[10] |
Kolli S, Javaheri V, Ohligschläger T, et al. The importance of steel chemistry and thermal history on the sensitization behavior in austenitic stainless steels: Experimental and modeling assessment [J]. Mater. Today Commun., 2020, 24: 101088
|
[11] |
Qian J, Chen C F, Yu H B, et al. The influence and the mechanism of the precipitate/austenite interfacial C-enrichment on the intergranular corrosion sensitivity in 310 S stainless steel [J]. Corros. Sci., 2016, 111: 352
|
[12] |
Wang J X, Shi W, Xiang S, et al. Study of the corrosion behaviour of sensitized 904L austenitic stainless steel in Cl- solution [J]. Corros. Sci., 2021, 181: 109234
|
[13] |
Congleton J, Yang W. The effect of applied potential on the stress corrosion cracking of sensitized type 316 stainless steel in high temperature water [J]. Corros. Sci., 1995, 37: 429
|
[14] |
Abduluyahed A A, Rożniatowski K, Kurzydłowski K J. Free surface contribution to sensitization of an austenitic stainless steel [J]. J. Mater. Process. Technol., 2001, 109(1): 2
|
[15] |
Srinivasan N, Kain V, Birbilis N, et al. Near boundary gradient zone and sensitization control in austenitic stainless steel [J]. Corros. Sci., 2015, 100: 544
|
[16] |
Barla N A, Ghosh P K, Das S, et al. Simulated stress-induced sensitization study for the heat-affected zone of the 304LN stainless steel weld using a thermomechanical simulator [J]. Metall. Mater. Trans., 2019, 50A: 1283
|
[17] |
Lewis A C, Bingert J F, Rowenhorst D J, et al. Two- and three-dimensional microstructural characterization of a super-austenitic stainless steel [J]. Mater. Sci. Eng., 2006, 418A: 11
|
[18] |
Peckner D, Bernstein I M. Handbook of Stainless Steels [M]. New York: McGraw-Hill Company, 1977
|
[19] |
Yao X Z, Li H J, Yang Z W, et al. Tailoring the microstructure and mechanical properties of wire arc additive manufactured Ti-6Al-4V alloy by trace TiC powder addition [J]. Trans. China Weld. Inst., 2024, 45(6): 12
|
|
姚兴中, 李会军, 杨振文 等. 微量TiC粉末合金化改善电弧增材制造Ti-6Al-4V合金的组织和性能 [J]. 焊接学报, 2024, 45(6): 12
|
[20] |
Shang Q, Man C, Pang K, et al. Mechanism of post-heat treatment on intergranular corrosion behavior of SLM-316L stainless steel with different carbon contents [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1273
|
|
商 强, 满 成, 逄 昆 等. 后热处理对不同含碳量SLM-316L不锈钢晶间腐蚀行为的作用机制研究 [J]. 中国腐蚀与防护学报, 2023, 43: 1273
|
[21] |
Duan Z W, Man C, Dong C F, et al. Pitting behavior of SLM 316L stainless steel exposed to chloride environments with different aggressiveness: pitting mechanism induced by gas pores [J]. Corros. Sci., 2020, 167: 108520
|
[22] |
Shi H C, Huang A M, Huang H, 30 Study on microstructure and fracture toughness of welded joint of CrMo/Q420qE high performance bridge steel [J]. Metal Mater. Metall. Eng., 2024, 52(6): 12
|
|
石红昌, 黄安明, 黄 辉. 30CrMo/Q420qE桥梁钢焊接接头显微组织及断裂韧性研究 [J]. 金属材料与冶金工程, 2024, 52(6): 12
|
[23] |
Revilla R I, Van Calster M, Raes M, et al. Microstructure and corrosion behavior of 316L stainless steel prepared using different additive manufacturing methods: a comparative study bringing insights into the impact of microstructure on their passivity [J]. Corros. Sci., 2020, 176: 108914
|
[24] |
Kong D C. Cellular dislocation structure effects on the strength, toughness and corrosion resistance of selective laser melted 316L stainless steel [D]. Beijing: University of Science and Technology Beijing, 2022
|
|
孔德成. 胞状位错结构对激光选区熔化316L不锈钢强韧性的影响与耐蚀机理研究 [D]. 北京: 北京科技大学, 2022
|
[25] |
Zhang X Q, Li Y P, Tang N, et al. Corrosion behaviour of CoCrMo alloys in 2wt% sulphuric acid solution [J]. Electrochim. Acta, 2014, 125: 543
|
[26] |
Liu G M, Liu Y Y, Cheng Y W, et al. The intergranular corrosion susceptibility of metastable austenitic Cr-Mn-Ni-N-Cu high-strength stainless steel under various heat treatments [J]. Materials, 2019, 12: 1385
|
[27] |
Dai H L, Zhang S Y, Li Y J, et al. Stress corrosion cracking behavior of 316 L manufactured by different additive manufacturing techniques in hydrofluoric acid vapor [J]. J. Mater. Sci. Technol., 2024, 191: 33
|
[28] |
Zhang T Y, Wu J S, Guo H L, et al. Influence of HSO 3 - on passive film composition and corrosion resistance of 2205 duplex stainless steel in simulated seawater [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 535
|
|
张天翼, 吴俊升, 郭海龙 等. 模拟海水中HSO 3 - 对2205双相不锈钢钝化膜成分及耐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2016, 36: 535
doi: 10.11902/1005.4537.2016.190
|
[29] |
Chen Y, Chen X, Liu T, et al. Effect of potential on electrochemical corrosion behavior of 316L stainless steel in borate buffer solution [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 137
|
|
陈 宇, 陈 旭, 刘 彤 等. 成膜电位对316L不锈钢在硼酸溶液中电化学行为的影响 [J]. 中国腐蚀与防护学报, 2015, 35: 137
|
[30] |
Qiang S M, Jiang L Z, Li J, et al. Evaluation of intergranular corrosion susceptibility of 11Cr ferritic stainless steel by DL-EPR method [J]. Acta Metall. Sin., 2015, 51: 1349
doi: 10.11900/0412.1961.2015.00117
|
|
强少明, 江来珠, 李 劲 等. 双环电化学动电位再活化法评价11Cr铁素体不锈钢晶间腐蚀敏感性 [J]. 金属学报, 2015, 51: 1349
|
[31] |
Bunchoo N, Wongpinkaew K, Kukiatkulchai E, et al. Effects of thermal history on sensitization behavior and Charpy impact property of type 316L and 316 stainless steels for applications in a fired heater [J]. Eng. Fail. Anal., 2022, 141: 106672
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|